Chapter 5

Circulation modelling


CHAPTER
COORDINATORS

Stefania Ciliberti
CHAPTER
AUTHORS

Nadia Ayoub, Jérôme Chanut, Mauro Cirano13, Anne Delamarche, Pierre De Mey-Frémaux, Marie Drevillon, Yann Drillet, Helene Hewitt, Simona Masina, Clemente Tanajura, Vassilios Vervatis, and Liying Wan

5.9 Inventories

The purpose of this section is to provide an initial inventory of the operational Near Real Time (NRT) and Multi Year (MY) systems operating at international level. Details about the specific system, resolution, implemented circulation model, and data assimilation are provided in the following lists, along with the observations used for assimilation and assessment, summary of the main offered product catalogue and, where existing, the website address to directly link to systems products and other relevant information.

5.9.1 Inventory of operational global to regional to coastal to local forecasting systems

The present state-of-the-art operational systems for NRT products from global to local scale is presented in Table 5.2. This proposed inventory has been prepared in collaboration with the Coastal and Shelf Seas (COSS-TT) Working Group, one of the OceanPredict Task Teams. An evolutive list of Regional/Coastal Ocean Forecasting Systems (R/COFS) is maintained by the COSS-TT in the System Information Table (SIT) (latest version available at 🔗10). Due to the shorter lifespan and more frequent updates in coastal systems compared to global and basin-scale systems, the SIT is frequently refreshed and then please refer to the latest online version for up-to-date information. In addition to operational/NRT systems, the online SIT contains also tools (e.g. used for applications, crisis-time scenarios, etc.), research and pre-operational models, etc.

Table 5.2. Initial inventory of global (G) to regional (R) to coastal (C) to local (L) operational forecasting systems.

ScaleSystemAreaResolutionCirculation modelData used for assimilation and assessmentDownscaling
/nesting
ProductsWebsite
GOceanMAPS, BLUElink (Bureau of Meteorology)Global ocean0.1 degree grid spacing at the Australia regionMOM4BODAS is an ensemble optimal interpolation system used to assimilate available in-situ and satellite obs.N/ADaily T, S, SSH and UVhttps://research.csiro.au/bluelink/global/forecast/
GCONCEPTS GIOPS (Government of Canada)Global ocean1/4° horizontal resolutionNEMOSEEK scheme, using INS, SLA, SST obs.N/ADaily 10-days forecast for T, S, SSH, UV, sea ice concentrationhttps://science.gc.ca/site/science/en/concepts/prediction-systems/global-ice-ocean-prediction-system-giops
GECCO: Estimating the Circulation and Climate of the OceanGlobal oceanThe horizontal resolution varies spatially from 22 km to 110 kmMITgcmAssimilation of INS, SLA, SST obs.N/ADaily forecast for T, S, SSH, UV, fluxes, sea icehttps://ecco-group.org/products-ECCO-V4r4.htm
GFOAM: Forecast Ocean Assimilation Model systemGlobal ocean1/4° horizontal resolutionNEMONEMOVAR (3D-Var scheme) using INS, SLA, SST obsN/ADaily mean, analysis and five-day forecast for T, S, SSH, UV, sea icehttps://www.metoffice.gov.uk/research/weather/ocean-forecasting
GNAVOCEANO, the US Naval Oceanographic Office (US)Global ocean1/12° horizontal resolutionHYCOMHybrid data assimilation schemeN/ADaily forecast for ocean fieldshttps://www.metoffice.gov.uk/research/weather/ocean-forecasting
GINCOIS, the Indian National Centre for Ocean Information ServiceGlobal oceanhorizontal resolution at 1/4° with 40 vertical sigma levelsROMSN/AN/ADaily 5 days forecast for surface UV, SST, MLD, waves and windshttps://incois.gov.in/
GGOFS16 CMCC Global Ocean Forecasting SystemGlobal ocean1/16° horizontal resolution and 98 vertical levelsNEMOOceanVar (3D-Var scheme) using INS, SL, SST, SICE obsN/ADaily analysis and 7 days forecast for T, S, SSH, UV, sea icehttps://gofs.cmcc.it/
GGlobal MFC by Copernicus Marine Service (MOI, France)Global ocean1/12° horizontal resolution and 50 vertical levelsNEMOSAM2 (SEEK scheme) using INS, SLA, SST obs.N/ADaily analysis and 10 days forecast for T, S, SSH, UV, sea icehttps://marine.copernicus.eu
G/RMOVE/MRI.COMJPN (MRI, Japan)Global, North Pacific, JapanDouble nested system consisting of global (GLB), North Pacific (NP) and Japan area (JPN) models Ocean model : MRI. COM with resolutions: (JPN) 1/33° x 1/50°, 60 levels; (NP) 1/11° x 1/10°, 60 levels; (GLB) 1°x1/2° (tripolar), 60 levelsMRI.COM4DVAR (applied to a reduced grid version of NP model). Assessment: Tide gauge, In-situ observations (buoy, T-S profiles), HF radars, satellite (SST, SSH, sea ice concentration), volume transport at repeated hydrographic sections.Downscaling: one/twoway nesting with IAU initializationReal time monitoring and prediction, reanalysis of: T, S, UV, SSH, sea ice concentration, tropical cyclone heat potential (TCHP)https://ds.data.jma.go.jp/tcc/tcc/products/elnino/
RArctic MFC by Copernicus Marine Service (NERSC, Norway)Arctic Region12.5 km at the North PoleHYCOMEnKF assimilation scheme using INS, SLA, SST and SICE obs.N/ADaily analysis and 10 days forecast for T, S, SSH, UV, sea icehttps://marine.copernicus.eu
RBaltic MFC by Copernicus Marine Service (SHMI, Sweden)Baltic Sea0.028 degrees x 0.017 degrees in horizontal and 56 levelsNEMOPDAF LESTKF univariate for SST1-way nested into NWS-MFC Copernicus Marine Service regional productDaily analysis and 6 days forecast for T, S, SSH, MLD, UVhttps://marine.copernicus.eu
RMediterranean Sea MFC by Copernicus Marine Service (CMCC, Italy)Mediterranean Sea1/24° in horizontal and 141 vertical levels, 2-way coupled to WW3 wave modelNEMOOceanVar (3D-Var scheme) using INS, SL, SST obs1-way nested into GLO-MFC Copernicus Marine Service (1/12°, 50 vertical levels)Analysis and 10 days forecast for T, S, SSH, UV, MLD, fluxes, sea iceahttps://marine.copernicus.eu, https://medfs.cmcc.it/
RIrish-Biscay-Iberian shelves MFC by Copernicus Marine Service (Mercator Ocean International, France / Spain)Irish-Biscay-Iberian shelves1/36° in horizontal and 50 vertical levelsNEMOSEEK scheme, using INS, SL, SST obs.1-way nested into GLO-MFC Copernicus Marine Service (1/12°, 50 vertical levels)Analysis and 5 days forecast for T, S, SSH, UV, MLDhttps://marine.copernicus.eu
RNorth-West shelf MFC by Copernicus Marine Service (Met Office, UK)European North-West shelf Seas1.5 km in horizontal and 51 hybrid s-sigma terrain-following coordinates on the verticalNEMONEMOVAR (3D-Var scheme) using INS, SL, SST obs1-way nested into Met Office FOAM NATL (1/12°; 6 hourly fields) and Baltic Sea physics by Copernicus Marine Service (2 km, 1 hourly fields)Analysis and 5 days forecast for T, S, SSH, UV, MLDhttps://marine.copernicus.eu
RBlack Sea MFC by Copernicus Marine Service (CMCC, Italy)Black Sea1/40° in horizontal and 121 vertical levelsNEMOOceanVar (3D-Var scheme) using INS, SL, SST obs.Lateral open boundary conditions from the Unstructured Turkish Straits System (U-TSS, Ilicak et al. 2021)Analysis and 10 days forecast for T, S, SSH, UV, MLDhttps://marine.copernicus.eu
RHigh Resolution Data Assimilative Model for Coastal and Shelf Seas around China (Institute of Atmospheric Physics/Chinese Academy of Sciences, China)Northwest Pacific, coastal seas around China  Assessment: SST, SLA, temperature, buoys, ship cruises2-way nestingDaily averaged 3-D fields of UV, T, S 
R/CMARC: Modelling and Analyses for Coastal Research and ILICO: Coastal Ocean and Nearshore Observation Research Infrastructure (Ifremer, France)Bay of Biscay / English Channel / Northwestern Mediterranean Sea2.5 km horizontal resolution and 40 levelsMARS3DSST, HF Radar (sea state + currents), Moored buoys (T,S)Spectral nudging, oneway nesting using GLO-MFC products and 2D models for tides1 hr output in Bay of Biscay, 3 hr output in Mediterranean Sea, HF observations (20min)

MARC: https://marc.ifremer.fr/

ILICO: https://www.ir-ilico.fr/en

R/CSOMISANA (SAEON/DFFE, South Africa)Algoa Bay, south coast, South AfricaHorizontal grid that decreases from ~3km at the edges to 500 m within the bayCROCONo DA. Assessment is based on Underwater Temperature Recorder (UTR) and ADCP data1-way nested into GLO-PHY (1/12°, 50 vertical levels)SSH, 3D T, S and UV, trajectories from hypothetical oil spillshttp://ocimstest.ocean.gov.za/aloga_bay_model
R/CCNAPS Coupled Northwest Atlantic Prediction System (North Carolina State University, USA)Northwest Atlantic coast ocean, including the entire east coast of U.S., the Gulf of Mexico and Caribbean seasHorizontal resolution < 7 kmROMSHF Radar, buoy, ship, satellite observations1-way nesting with Mercator Ocean GLOPHY; Global HyCOM; WWIIIDaily nowcast and 3-day forecast for UV, T, S, ocean waves and atmospheric variableshttp://omgsrv1.meas.ncsu.edu:8080/CNAPS/
R/CREMO Oceanographic Modeling and Observation Network (Brazilian Navy Hydrographic Center, Brazil)Region between latitudes 35.5°S and 7°N and longitude 20°W to the Brazilian coast2 grids, at 1/12° and 1/24° horizontal resolutions for the eastern, southeastern and southern regionsHYCOMThe system assimilates vertical profiles of temperature (T) and salinity (S) from the ARGO system, XBTs, CTDs, Sea Level Anomaly, SST; assessment using AVISO SL, SST, INSTPXO 7.1 for tides; one-way nesting from the 1/12° resolution to the 1/24° resolution grid4-day forecasts (T, UV and SSH) at 6-hour intervals updated daily on 2 different gridshttps://www.marinha.mil.br/chm/dados-do-smm-modelagem-numerica-tela-de-chamada
R/CDREAMS: Data assimilation Research of the East Asian Marine System (RIAM, Kyushu University, Japan)Northwestern Pacific with focus on marginal seasDREAMS_marginal seas model at ~7.4km horizontal resolution. Coastal models at ~1.5km along the Japan Sea coast nested in DREAMS_ marginal seas modelRIAMAssessment: Volume transport through the Tsushima Strait, U, V and T measurements by fishing vesselsOBC from climatological runT, S, U, V, sea level, mixed layer depth, densityhttps://dreams-c1.riam.kyushu-u.ac.jp/vwp/
R to LBSH Operational Model System (BSH, Germany)North and Baltic Sea, German coastal watersHorizontal resolution is 3 km for the North and Baltic Sea, 0.5 km for German coastal watersHBMAssimilation with PDAF scheme using AVHRR SST/ Sentinel-3 SST and validation using Copernicus Marine Service data2-way nesting among regional and coastal models120-hour forecast from 0 and 12 UTC and a 78-hour forecast from 6 and 18 UTC; water level, T, S, UV, ice products and biogeochemical variableshttps://www.bsh.de/EN/DATA/Predictions/predictions_node.html
R to LCOSYNANorth Sea, German Bight, German Wadden Sea3 nested models: i) North Sea Baltic Sea model (5 km), ii) German Bight model (1 km, varying unstructured-grid, 1km), iii) Estuarine model (varying unstructured-grid, 20-200 m)GETMAssessment with independent ADCP observations, FerryBox data, dedicated profile measurements, intercomparison with products from other operational systemsMyOcean ECOOP, OSTIA, MERIS color data Downscaling using 3 different gridsSurface UV, T, S, suspended matter, wind wave characteristics in the German Bighthttp://codm.hzg.de/codm/
CPCOMS: Portuguese Coastal Operational Modelling System (MARETEC, Portugal)Western Iberia region and subregions5.6 km in horizontal and 50 vertical layersMOHID 3DN/A1-way nesting into Mercator-Ocean PSY2V4 in the North Atlantic; tidal levels computed by a 2D version of MOHID, forced by FES2004, running on a wider region. Climatological profiles from WOA09 for nutrients.Hindcasts and 3-day forecasts of SSH and 3D UV, T, S and biogeochemical modelhttp://forecast.maretec.org/
CSANIFS (CMCC, Italy)Southern Adriatic Northern Ionian coastal Forecasting SystemHorizontal resolution from 3 km in open-sea to 100-20 m in coastal areasSHYFEMNo DA. Assessment using available observations from Copernicus Marine Service, EMODnet and national observing network1-way nesting using the Copernicus Marine Service Mediterranean MFC regional forecast products (at 1/24°)Short term forecast (3 days) of SSH, 3D UV, T, Shttps://adri.cmcc.it/
C/LSAMOA (Puertos del Estado, Spain)Regional areas at ~ 2 km resolution; model applications consist of 2 nested regular grids with spatial resolution of ~350 m and ~70 m for the coastal and harbour domainsRegional areas at ~ 2 km resolution; model applications consist of 2 nested regular grids with spatial resolution of ~350 m and ~70 m for the coastal and harbour domainsROMSNo DA. Assessment using in-situ obs. from mooring buoys, ADCPs, tide gauges and drifter buoys; SST satellite data and surface currents from HF radar1-way nesting using the IBI-MFC Regional Forecast products (at 1/36°)Daily operational short-term (+72h) metocean forecasthttp://opendap.puertos.es/thredds/catalog.html ; https://www.puertos.es/es-es/proyectos/Paginas/SAMOA.aspx
C/LNYHOPS: New York Harbor Observation and Prediction System (Jupiter Intelligence, USA)New York and East Coast of US7.5 km at the open ocean boundary to less than 50 mPOMN/AOffshore boundary tides, surges, waves. Real time data from Ntl Ocean Service, Adv. Hydrologic Prediction Service, Ntl. Climatic Data Center.72 hr forecasts, nowcasts, 24 hr hindcasts initiated every 6 hrs; Variables: SSH, T, S, UV, winds, coastal waves - height, period and direction, biogeochemical variableshttps://hudson.dl.stevens-tech.edu/maritimeforecast/index.shtml
C/LSWITCH – Georgia Coasts (CMCC / GeorgiaTech, Italy / USA)Georgia coast, US1km in open ocean to 100m in coastal areas to 10m in the riversSHYFEMNo DA, assessment is based on tide gauges at coast and along rivers1-way nested into GLO-PHY (1/12°, 50 vertical levels)3-days forecast for SSH, 3D UV, T, Shttps://savannah.cmcc.it
LTagus Mouth operational model (MARETEC / IST, Portugal)Tagus Estuary and Mouth regionVariable horizontal resolution, ranging from 2 km off the coast up to 400 m inside the estuary, 50 layers in the verticalMOHID 3DNo DA. Assessment: Argo and buoys data from IBI-ROOS and the Portuguese hydrographic institute, satellite images (ODYSSEA, Ocean Colour and HF radar)1-way nesting using the PCOMSHindcasts and 3-day forecasts of SSH and 3D UV, T, S and biogeochemical modelhttp://forecast.maretec.org/maps_tagusmouth.asp
 

5.9.2 Inventory of multi-year systems

Starting from the list in Balmaseda et al. 2015, an initial inventory of state-of-the-art MY systems has been prepared (Table 5.3). As in Table 5.2, for each system is provided scale (from global to regional), resolution, models, and providers, as well as relevant links to web pages that the reader may consult for further details.

Table 5.3. Initial inventory of global (G) to regional (R) to coastal (C) to local (L) multi-year systems.

ScaleSystemAreaResolutionCirculation modelData used for assimilation and assessmentDownscaling  
/nesting
ProductsWebsite
GCFSR by the Climate Prediction CenterGlobal Ocean~ 38 km horizontal resolution and 64 vertical levelsMOM43D-Var scheme for the assimilation of SST, INS, SICE obs.N/A1979-2010https://rda.ucar.edu/lookfordata/
GC-GLORS by the Euro-Mediterranean Center on Climate Change FoundationGlobal Ocean1/4° horizontal resolution and 50 to 75 levelsNEMOOceanVar (3D-Var scheme) using INS, SLA, SST and SICE obs.N/A1990-2016http://c-glors.cmcc.it/index/index.html
GECCO by JPL-NASAGlobal OceanThe horizontal resolution varies spatially from 22 km to 110 kmMitGCM4D-Var scheme for the assimilation of SLA, SST and INS obs.N/A1992-2017https://www.ecco-group.org/
GGECCO by University of HamburgGlobal Ocean MitGCM4D-Var scheme for the assimilation of SLA, SST and INS obsN/A1948-2018https://www.ecco-group.org/
GECDA by the Geophysical Fluid Dynamics LaboratoryGlobal Ocean1° horizontal resolution and 50 vertical levelsMOM4EnKF scheme using INS, SST and SLA obs.N/AIntegration for the 20th Centuryhttp://www.gfdl.noaa.gov/ocean-data-assimilation
GGloSea5 (UK MetOffice, UK)Global Ocean1/4° horizontal resolution and 75 levelsNEMO3D-Var scheme using SLA, SST, INS and SICE obs.N/A1993-2015https://www.metoffice.gov.uk/research/
GK7-ODA (Japan Agency for Marine-Earth Science and Technology)Global Ocean1° horizontal resolution and 45 levelsMOM34D-Var adjont method for the assimilation of INS, SLA, SST obs.N/A1957-2009https://www.godac.jamstec.go.jp/estoc/e/
GPEODAS (Centre for Australian Weather and Climate Research - Bureau of Meteorology)Global Ocean1° x 2° horizontal resolutionMOM2EnKF for the assimilation of INS and SST obs.N/A2000-2010https://www.cawcr.gov.au/
GORAS5 (ECMWF, UK)Global Ocean1° horizontal resolutionNEMO3D-Var scheme using SLA, INS and SST obs.N/A1979-presenthttps://www.ecmwf.int/en/research/climate-reanalysis/ocean-reanalysis
GMOVE-C RA (Japan Meteorological AgencyGlobal Ocean1° horizontal resolutionMRI.COM23D-Var scheme using SLA, INS and SST obs.N/A1950-2011https://www.mri-jma.go.jp/
GSODA (National Center for Atmospheric Research Staff, US)Global Ocean1/4° horizontal resolutionPOP2.1OI for INS and SST obs.N/A1869-2010https://climatedataguide.ucar.edu/climate-data/soda-simple-ocean-data-assimilation
GGlobal Ocean MFC by Copernicus Marine Service (MOI, France)Global Ocean1/12° horizontal resolution, 50 vertical levelsNEMOReduced-order Kalman filter for assimilating SLA, SST, INS and SICE obs.N/A1993-2019https://marine.copernicus.eu
RArctic MFC by Copernicus Marine Service (NERSC, Norway)Arctic Region12.5 km horizontal resolution and 12 levelsHYCOM1993-2019N/A1991-2019https://marine.copernicus.eu
RBaltic MFC by Copernicus Marine Service (SHMI, Sweden)Baltic Sea0.05556 degrees x 0.03333 degrees horizontal resolution and 56 vertical levelsNEMOLSEIK data assimilation schemeAt the lateral boundaries in the western English Channel and along the Scotland-Norway boundary, the sea levels are prescribed using a coarse (24 nautical miles resolution) storm-surge model called NOAMOD (North Atlantic Model). Climatological monthly mean values of salinity and temperature are used at the boundary, and it is assumed there is no sea ice1993-2019https://marine.copernicus.eu
RNorth-West shelf MFC by Copernicus Marine Service (Met Office, UK)North West Shelf Seas7 km horizontal resolution and 24 vertical levelsNEMONEMOVAR (3D-Var scheme) using SST and INS obs.1-way nested into the Global Ocean MFC and Baltic MFC reanalysis products1993-2019https://marine.copernicus.eu
RIrish-Biscay-Iberian shelves MFC by Copernicus Marine Service (Puertos del Estado, Spain)Irish-Biscay-Iberian shelves1/12° horizontal resolutionNEMOSEEK scheme, using INS, SL, SST obs.1-way nested into the Global Ocean MFC reanalysis product at 1/4° horizontal resolution1993-2019https://marine.copernicus.eu
RMediterranean Sea MFC by Copernicus Marine Service (CMCC, Italy)Mediterranean Sea1/24° in horizontal and 141 vertical levelsNEMOOceanVar (3D-Var scheme) using INS, SLA, SST obs.1-way nested into C-GLORS1993-2019https://marine.copernicus.eu
RBlack Sea MFC by Copernicus Marine Service (CMCC, Italy)Black Sea3 km horizontal resolution and 31 vertical levelsNEMOOceanVar (3D-Var scheme) using INS, SLA, SST obs.N/A1993-2019https://marine.copernicus.eu
 

References

Balmaseda, M. A., Mogensen, K., and Weaver, A.T. (2013). Evaluation of the ECMWF ocean reanalysis system ORAS4. Quarterly Journal of the Royal Meteorological Society, 139, 1132-1161, https://doi.org/10.1002/qj.2063 

Balmaseda, M.A., Hernandez, F., Storto , A., Palmer, M.D., Alves, O., Shi, L., Smith, G.C. Toyoda, T., Valdivieso, M., Barnier, B., Behringer, D., Boyer, T., Chang, Y-S., Chepurin, G.A., Ferry, N., Forget, G., Fujii, Y., Good, S., Guinehut, S., Haines, K., Ishikawa, Y., Keeley, S., Köhl, A., Lee, T., Martin, M.J, Masina, S., Masuda, S., Meyssignac, B., Mogensen, K., Parent, L., Peterson, K.A., Tang, Y.M., Yin, Y., Vernieres, G., Wang, X., Waters, J., Wedd, R., Wang, O., Xue, Y., Chevallier, M., Lemieux, J.F., Dupont, F., Kuragano, T., Kamachi, M., Awaji, T., Caltabiano, A., Wilmer-Becker, K., Gaillard, F. (2015). The Ocean Reanalyses Intercomparison Project (ORA-IP). Journal of Operational Oceanography, 8(sup1), s80-s97, https://doi.org/10.1080/1755876X.2015.1022329

Barth, A., Alvera-Azcárate, A., Beckers, J.M., Weisberg, R. H., Vandenbulcke, L., Lenartz, F., and Rixen, M. (2009). Dynamically constrained ensemble perturbations–application to tides on the West Florida Shelf. Ocean Science, 5, 259-270, https://doi.org/10.5194/os-5-259-2009 

Bell, M., Schiller, A., Le Traon, P-Y., Smith, N.R., Dombrowsky, E., Wilmer-Becker, K. (2015). An introduction to GODAE OceanView. Journal of Operational Oceanography, 8, 2-11, https://doi.org/10.1080/1755876X.2015.1022041 

Bennett, A.F. (1992). Inverse Methods in Physical Oceanography, Cambridge University Press, Cambridge, UK. 

Berner, J., G. Shutts, M. Leutbecher, and T. Palmer. (2009). A spectral stochastic kinetic energy backscatter scheme and its impact on flow-dependent predictability in the ECMWF ensemble prediction system. Journal of the Atmospheric Sciences, 66, 603-626, https://doi.org/10.1175/2008JAS2677.1 

Bessières, L., Leroux, S., Brankart, J.M., Molines, J.M., Moine, M.P., Bouttier, P.A., Penduff, T., Terray, L., Barnier, B., Sérazin, G. (2017). Development of a probabilistic ocean modelling system based on NEMO 3.5: Application at eddying resolution. Geoscientific Model Development, 10, 1091-1106, https://doi.org/10.5194/gmd-10-1091-2017

Bjerknes, V. (1914). Meteorology as an exact science. Monthly Weather Review, 42(1), 11-14, https://doi.org/10.1175/1520-0493(1914)42<11:MAAES>2.0.CO;2 

Blayo, E., and Debreu, L. (1999). Adaptive mesh refinement for finite-difference ocean models: first experiments. Journal of Physical Oceanography, 29(6), 1239-1250, https://doi.org/10.1175/1520-0485(1999)029%3C1239:AMRFFD%3E2.0.CO;2

Blayo, E., and Debreu, L. (2005). Revisiting open boundary conditions from the point of view of characteristic variables. Ocean Modelling, 9(3), 231-252, https://doi.org/10.1016/j.ocemod.2004.07.001 

Bouttier, F., and Courtier, P. (2002). Data assimilation concepts and methods, March 1999. ECMWF Education material, 59 pp., https://www.ecmwf.int/en/elibrary/16928-data-assimilation-concepts-and-methods 5.10.

Brankart, J.-M., (2013). Impact of uncertainties in the horizontal density gradient upon low resolution global ocean modelling. Ocean Modelling, 66, 64-76, http://dx.doi.org/10.1016/j.ocemod.2013.02.004 

Brankart, J.-M., Candille, G., Garnier, F., Calone, C., Melet, A., Bouttier, P.-A., Brasseur, P., Verron, J., (2015). A generic approach to explicit simulation of uncertainty in the NEMO ocean model. Geoscientific Model Development, 8, 1285-1297, https://doi.org/10.5194/gmd-8-1285-2015 

Brassington, G.B., Warren, G., Smith, N., Schiller, A., Oke, P.R. (2005). BLUElink> Progress on operational ocean prediction for Australia. Bulletin of the Australian Meteorological and Oceanographic Society, Vol.18 p. 104. 

Buizza, R., Miller, M., Palmer, T.N. (1999). Stochastic representation of model uncertainties in the ECMWF ensemble prediction system. Quarterly Journal of the Royal Meteorological Society, 125, 2887-2908, http://dx.doi.org/10.1002/qj.49712556006 

Candille, G., and Talagrand, O. (2005). Evaluation of probabilistic prediction systems for a scalar variable. Quarterly Journal of the Royal Meteorological Society, 131, 2131-2150, https://doi.org/10.1256/qj.04.71 

Charria, G., Lamouroux, J., De Mey, P. (2016). Optimizing observational networks combining gliders, moored buoys and FerryBox in the Bay of Biscay and English Channel. J. Mar. Syst., 162, 112-125. http://dx.doi.org/10.1016/j.jmarsys.2016.04.003 

Chassignet, E. P., Hurlburt, H. E., Smedstad, O. M., Halliwell, G. R., Hogan, P. J., Wallcraft, A. J., and Bleck, R. (2006). Ocean prediction with the hybrid coordinate ocean model (HYCOM). In “Ocean weather forecasting”, 413-426, Springer, Dordrecht, doi:10.1007/1-4020-4028-8_16 

Chelton, D. B., DeSzoeke, R. A., Schlax, M. G., El Naggar, K., and Siwertz, N. (1998). Geographical variability of the first baroclinic Rossby radius of deformation. Journal of Physical Oceanography, 28(3), 433-460, https://doi.org/10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2 

Cheng, S., Aydoğdu, A., Rampal, P., Carrassi, A., Bertino, L. (2020). Probabilistic Forecasts of Sea Ice Trajectories in the Arctic: Impact of Uncertainties in Surface Wind and Ice Cohesion. Oceans, 1, 326- 342, https://doi.org/10.3390/oceans1040022 

Ciavatta, S., Torres, R., Martinez-Vicente, V., Smyth, T., Dall'Olmo, G., Polimene, L., and Allen, J. I. (2014). Assimilation of remotely-sensed optical properties to improve marine biogeochemistry modelling. Progresses in Oceanography, 127, 74-95, https://doi.org/10.1016/j.pocean.2014.06.002 

Crosnier, L., and Le Provost, C. (2007). Inter-comparing five forecast operational systems in the North Atlantic and Mediterranean basins: The MERSEA-strand1 Methodology. Journal of Marine Systems, 65(1-4), 354-375, https://doi.org/10.1016/j.jmarsys.2005.01.003 

Cummings, J. A. (2005). Operational multivariate ocean data assimilation. Quarterly Journal of the Royal Meteorological Society, 131(613), 3583-3604, https://doi.org/10.1256/qj.05.105 

Cummings, J.A., and Smedstad, O.M. (2013). Variational data analysis for the global ocean. In: S.K. Park and L. Xu (Eds.), Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications Vol. II., doi:10.1007/978-3-642-35088-7_13, Springer-Verlag Berlin Heidelberg. 

Daley, R. (1991). Atmospheric Data Analysis. Cambridge University Press. 457 pp. 

Danilov, S., Kivman, G., and Schröter, J. (2004). A finite-element ocean model: principles and evaluation. Ocean Modelling, 6(2), 125-150, https://doi.org/10.1016/S1463-5003(02)00063-X 

Debreu, L., Marchesiello, P., Penven, P., and Cambon, G. (2012). Two-way nesting in split-explicit ocean models: Algorithms, implementation and validation. Ocean Modelling, 49, 1-21, https://doi.org/10.1016/j.ocemod.2012.03.003 

Debreu, L., Vouland, C., and Blayo, E. (2008). AGRIF: Adaptive grid refinement in Fortran. Computers & Geosciences, 34(1), 8-13, https://doi.org/10.1016/j.cageo.2007.01.009 

De Mey-Frémaux and the Groupe MERCATOR Assimilation (1998). Scientific Feasibility of Data Assimilation in the MERCATOR Project. Technical Report, doi: https://doi.org/10.5281/zenodo.3677206 

De Mey P., Craig P., Kindle J., Ishikawa Y., Proctor R., Thompson K., Zhu J., and contributors (2007). Towards the assessment and demonstration of the value of GODAE results for coastal and shelf seas and forecasting systems, 2nd ed. GODAE White Paper, GODAE Coastal and Shelf Seas Working Group (CSSWG), 79 pp. Available online at: http://www.godae.org/CSSWG.html 

De Mey-Frémaux, P., Ayoub, N., Barth, A., Brewin, R., Charria, G., Campuzano, F., Ciavatta, S., Cirano, M., Edwards, C.A., Federico, I., Gao, S., Garcia-Hermosa, I., Garcia-Sotillo, M., Hewitt, H., Hole, L.R., Holt, J., King, R., Kourafalou, V., Lu, Y., Mourre, B., Pascual, A., Staneva, J., Stanev, E.V., Wang, H. and Zhu X. (2019). Model-Observations Synergy in the Coastal Ocean. Frontiers in Marine Science, 6:436, https://doi.org/10.3389/fmars.2019.00436 

Desroziers, G., Berre, L., Chapnik, B., Poli, P. (2005). Diagnosis of observation, background and analysis-error statistics in observation space. Quarterly Journal of the Royal Meteorological Society, 131, 3385-3396, http://dx.doi.org/10.1256/qj.05.108 

Dyke, P. (2016). Modelling Coastal and Marine Processes. 2nd Edition, Imperial College Press, https://doi.org/10.1142/p1028 

Ebert, E. E. (2009). Neighborhood verification - a strategy for rewarding close forecasts. Weather and Forecasting, 24(6), 1498-1510, https://doi.org/10.1175/2009WAF2222251.1 

Evensen, G. (2003). The ensemble Kalman filter: Theoretical formulation and practical implementation. Ocean dynamics, 53, 343-367, https://doi.org/10.1007/s10236-003-0036-9 

Fox-Kemper, B., Adcroft, A., Böning, C.W., Chassignet, E.P., Curchitser, E., Danabasoglu, G., Eden, C., England, M.H., Gerdes, R., Greatbatch, R.J., Griffies, S.M., Hallberg, R.W., Hanert, E., Heimbach, P., Hewitt, H.T., Hill, C.N., Komuro, Y., Legg, S., Le Sommer, J., Masina, S., Marsland, S.J., Penny, S.G., Qiao, F., Ringler, T.D., Treguier, A.M., Tsujino, H., Uotila, P., and Yeager, S.G. (2019). Challenges and Prospects in Ocean Circulation Models. Frontiers in Marine Science, 6:65, https://doi.org/10.3389/fmars.2019.00065

Gerya, T. (2019). Introduction to Numerical Geodynamic Modelling. 2nd edition, Cambridge University Press, https://doi.org/10.1017/9781316534243 

Ghantous, M., Ayoub, N., De Mey-Frémaux, P., Vervatis, V., Marsaleix, P. (2020). Ensemble downscaling of a regional ocean model. Ocean Modelling, 145, http://dx.doi.org/10.1016/j.ocemod.2019.101511 

Ghil, M., and Melanotte-Rizzoli, P. (1991). Data Assimilation in Meteorology and Oceanography. Advances in Geophysics, 33, 141-266, https://doi.org/10.1016/S0065-2687(08)60442-2 

Greenberg, D.A., Dupont, F., Lyard, F., Lynch, D., Werner, F. (2007). Resolution issues in numerical models of oceanic and coastal circulation. Continental Shelf. Research, 27(9), https://doi.org/10.1016/j.csr.2007.01.023

Griffies, S. M., Pacanowski, R. C., and Hallberg, R. W. (2000). Spurious diapycnal mixing associated with advection in a z-coordinate ocean model. Monthly Weather Review, 128, 538-564, https://doi.org/10.1175/1520-0493(2000)128<0538:SDMAWA>2.0.CO;2 

Griffies, S. M. (2006). Some ocean model fundamentals. In “Ocean Weather Forecasting”, Editoris: E. P. Chassignet and J. Verron, 19-73, Springer-Verlag, Dordrecht, The Netherlands, doi:10.1007/1-4020- 4028-8_2 

Hallberg, R. (2013). Using a resolution function to regulate parameterizations of oceanic mesoscale eddy effects. Ocean Modelling, 72, 92-103, https://doi.org/10.1016/j.ocemod.2013.08.007 

Hersbach H. (2000). Decomposition of the continuous ranked probability score for ensemble prediction systems. Weather and Forecasting, 15(5), 559-570, https://doi.org/10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2 

Herzfeld, M., and Gillibrand, P.A. (2015). Active open boundary forcing using dual relaxation time-scales in downscaled ocean models. Ocean Modelling, 89, 71-83, https://doi.org/10.1016/j.ocemod.2015.02.004 

Hewitt, H.T., Roberts, M., Mathiot, P. et al. (2020). Resolving and Parameterising the Ocean Mesoscale in Earth System Models. Current Climate Change Reports, 6, 137-152, https://doi.org/10.1007/s40641-020-00164-w 

Hirsch, C. (2007). Numerical Computation of Internal and External Flows - The Fundamentals of Computational Fluid Dynamics. 2nd Edition, Butterworth-Heinemann. 

Hunke, E., Allard, R., Blain, P., Blockey, E., Feltham, D., Fichefet, T., Garric, G., Grumbine, R., Lemieux, J.-F., Rasmussen, T., Ribergaard, M., Roberts, A., Schweiger, A., Tietsche, S., Tremblay, B., Vancoppenolle, M., Zhang, J. (2020). Should Sea-Ice Modeling Tools Designed for Climate Research Be Used for Short-Term Forecasting? Current Climate Change Reports, 6, 121-136, https://doi.org/10.1007/s40641-020-00162-y 

Ide, K., Courtier, P., Ghil, M., and Lorenc, A. C. (1997). Unified notation for data assimilation: Operational, sequential and variational (Special Issue Data Assimilation in Meteorology and Oceanography: Theory and Practice). Journal of the Meteorological Society of Japan, Ser. II, 75(1B), 181-189, https://doi.org/10.2151/jmsj1965.75.1B_181 

Janssen, P.A.E.M., Abdalla, S., Hersbach, H., Bidlot, J.R. (2007). Error estimation of buoy, satellite, and model wave height data. Journal of Atmospheric and Oceanic Technology, 24(9), 1665-1677, https://doi.org/10.1175/JTECH2069.1 

Juricke, S., Lemke, P., Timmermann, R., Rackow, T. (2013). Effects of Stochastic Ice Strength Perturbation on Arctic Finite Element Sea Ice Modeling. Journal of Climate, American Meteorological Society, 26(11), 3785-3802, https://doi.org/10.1175/JCLI-D-12-00388.1 

Kantha, L. H., & Clayson, C. A. (2000). Numerical models of oceans and oceanic processes. Elsevier, 1-940, ISBN: 978-0-12-434068-8. 

Katavouta, A., Thompson, K.R. (2016). Downscaling ocean conditions with application to the Gulf of Maine, Scotian Shelf and adjacent deep ocean. Ocean Modelling,104, 54-72, https://doi.org/10.1016/j.ocemod.2016.05.007 

Lamouroux, J., Charria, G., Mey, P. De, Raynaud, S., Heyraud, C., Craneguy, P., Dumas, F., Le Hénaff, M. (2016). Objective assessment of the contribution of the RECOPESCA network to the monitoring of 3D coastal ocean variables in the Bay of Biscay and the English Channel. Ocean Dynamics, 66(4), 567- 588, http://dx.doi.org/10.1007/s10236-016-0938-y 

Latif, M., Barnett, T.P., Cane, M.A. et al. (1994). A review of ENSO prediction studies. Climate Dynamics, 9,167-179. CHAPTER 5. CIRCULATION MODELLING 120 

Le Traon, P. Y., Reppucci, A., Alvarez Fanjul, E., Aouf, L., Behrens, A., Belmonte, M., ... and Zacharioudaki, A. (2019). From observation to information and users: the Copernicus Marine Service perspective. Frontiers in Marine Science, 6, 234, https://doi.org/10.3389/fmars.2019.00234 

Lellouche, J.-M., Le Galloudec, O., Drévillon, M., Régnier, C., Greiner, E., Garric, G., Ferry, N., Desportes, C., Testut, C.-E., Bricaud, C., Bourdallé-Badie, R., Tranchant, B., Benkiran, M., Drillet, Y., Daudin, A., De Nicola, C. (2013). Evaluation of global monitoring and forecasting systems at Mercator Océan. Ocean Science, 9, 57-81, 2013, https://doi.org/10.5194/os-9-57-2013

Lima, L.N., Pezzi, L.P., Penny, S.G., and Tanajura, C.A.S., (2019). An investigation of ocean model uncertainties through ensemble forecast experiments in the Southwest Atlantic Ocean. Journal of Geophysical Research: Oceans, 124, 432-452. https://doi.org/10.1029/2018JC013919

Lumpkin, R., and Speer, K. (2007). Global Ocean Meridional Overturning. Journal of Physical Oceanography, 37(10), 2550-2562, https://doi.org/10.1175/JPO3130.1

Lyard, F. H., Allain, D. J., Cancet, M., Carrere, L., and Picot, N. (2021). Fes2014 global ocean tides atlas: design and performances. Ocean Science, 17, 615-649, https://doi.org/10.5194/os-17-615-2021

Madec, G., and NEMO System Team, (2022). “NEMO ocean engine”, Scientific Notes of Climate Modelling Center (27) – ISSN 1288-1619, Institut Pierre-Simon Laplace (IPSL), doi:10.5281/zenodo.6334656

Martin, M. J., Hines, A., and Bell, M. J. (2007). Data assimilation in the FOAM operational short-range ocean forecasting system: a description of the scheme and its impact. Quarterly Journal of the Royal Meteorological Society, 133(625), 981-995, https://doi.org/10.1002/qj.74

Martin, M. J., Balmaseda, M., Bertino, L., Brasseur, P., Brassington, G., Cummings, J., ... and Weaver, A. T. (2015). Status and future of data assimilation in operational oceanography. Journal of Operational Oceanography, 8(sup1), s28-s48, https://doi.org/10.1080/1755876X.2015.1022055

Mason, E., Pascual, A., and McWilliams, J.C. (2014). A new sea surface height–based code for oceanic mesoscale eddy tracking. Journal of Atmospheric and Oceanic Technology, 31(5), 1181-1188, https://doi.org/10.1175/JTECH-D-14-00019.1

Mazloff, M. R., Cornuelle, B., Gille, S. T., Wang, J. (2020). The importance of remote forcing for regional modeling of internal waves. Journal of Geophysical Research: Oceans, 125, e2019JC015623, https://doi.org/10.1029/2019JC015623

Menard, R., and Daley, R. (1996). The application of Kalman smoother theory to the estimation of 4DVAR error statistics. Tellus A: Dynamic Meteorology and Oceanography, 48, 221-237, https://doi.org/10.3402/tellusa.v48i2.12056

Mittermaier, M., Roberts, N., and Thompson, S.A. (2013). A long-term assessment of precipitation forecast skill using the Fractions Skill Score. Meteorological Applications, 20(2),176-186, https://doi.org/10.1002/met.296

Mittermaier, M., North, R., Maksymczuk, J., Pequignet, C., & Ford, D. (2021). Using feature-based verification methods to explore the spatial and temporal characteristics of forecasts of the 2019 Chlorophyll-a bloom season over the European North-West Shelf. Ocean Science,17,1527-1543, https://doi.org/10.5194/os-17-1527-2021

Mogensen, K, Balmaseda, A., Alonso, W.M. (2012). The NEMOVAR ocean data assimilation system as implemented in the ECMWF ocean analysis for System 4. Technical memorandum, doi:10.21957/x5y9yrtm

O'Brien, M.P., and Johnson, J.W. (1947). Wartime research on waves and surf. The Military Engineer, 39, pp. 239-242.

Oke, P. R., Brassington, G. B., Griffin, D. A., and Schiller, A. (2008). The Bluelink ocean data assimilation system (BODAS). Ocean Modelling, 21(1-2), 46-70, https://doi.org/10.1016/j.ocemod.2007.11.002

Ollinaho, P., Lock, S., Leutbecher, M., Bechtold, P., Beljaars, A., Bozzo, A., Forbes, R.M., Haiden, T., Hogan, R.J., Sandu, I. (2017). Towards process-level representation of model uncertainties: stochastically perturbed parametrizations in the ECMWF ensemble. Quarterly Journal of the Royal Meteorological Society, 143, 408-422, http://dx.doi.org/10.1002/qj.2931

Palmer, T. (2018). The ECMWF ensemble prediction system: Looking back (more than) 25 years and projecting forward 25 years. Quarterly Journal of the Royal Meteorological Society, 145, 12-24, https://doi.org/10.1002/qj.3383

Penduff, T., Barnier, B., Terray, L., Sérazin, G., Gregorio, S., Brankart, J.-M., Moine, M.-P., Molines, J.-M., Brasseur, P. (2014). Ensembles of eddying ocean simulations for climate. In: CLIVAR Exchanges, 65(19), 26-29. Available at: https://www.clivar.org/sites/default/files/documents/exchanges65_0.pdf

Pham, D. T., Verron, J., and Roubaud, M.C. (1998). A singular evolutive Kalman filters for data assimilation in oceanography. Journal of Marine Systems, 16(3-4), 323-340, https://doi.org/10.1016/S0924-7963(97)00109-7

Pinardi, N., Lermusiaux, P.F.J., Brink, K.H., Preller, R. H. (2017). The Sea: The science of ocean predictions. Journal of Marine Research, 75(3), 101-102, https://www.researchgate.net/publication/319872390_The_Sea_The_Science_of_Ocean_Prediction

Quattrocchi, G., De Mey, P., Ayoub, N., Vervatis, V., Testut, C.-E., Reffray, G., Chanut, J., Drillet, Y., (2014). Characterisation of errors of a regional model of the bay of biscay in response to wind uncertainties: a first step toward a data assimilation system suitable for coastal sea domains. Journal of Operational Oceanography, 7(2), 25-34, https://doi.org/10.1080/1755876X.2014.11020156 

Ren, S., Zhu, X., Drevillon, M., Wang, H., Zhang, Y., Zu, Z., Li, A. (2021). Detection of SST Fronts from a High-Resolution Model and Its Preliminary Results in the South China Sea. Journal of Atmospheric and Oceanic Technology, 38(2), 387-403, https://doi.org/10.1175/JTECH-D-20-0118.1

Ryan, A. G., Regnier, C., Divakaran, P., Spindler, T., Mehra, A., Smith, G. C., et al. (2015). GODAE OceanView Class 4 forecast verification framework: global ocean inter-comparison. Journal of Operational Oceanography, 8(sup1), S112-S126, https://doi.org/10.1080/1755876X.2015.1022330

Sakov, P., Counillon, F., Bertino, L., Lisæter, K.A., Oke, P.R., Korablev, A., (2012). TOPAZ4: an ocean-sea ice data assimilation system for the north atlantic and arctic. Ocean Science, 8 (4), 633–656, http://dx.doi.org/10.5194/os-8-633-2012

Sandery, P.A., and Sakov, P. (2017). Ocean forecasting of mesoscale features can deteriorate by increasing model resolution towards the submesoscale. Nature Communications, 8,1566, http://dx.doi.org/10.1038/s41467-017-01595-0

Santana-Falcón, Y., Brasseur, P., Brankart, J.M., and Garnier, F. (2020). Assimilation of chlorophyll data into a stochastic ensemble simulation for the North Atlantic Ocean. Ocean Science, 16, 1297-1315, https://doi.org/10.5194/os-16-1297-2020

Sasaki, Y. (1970). Some basic formalisms in numerical variational analysis. Monthly Weather Review, 98(12), 875-883.

Sein, D.V., Koldunov, N.K., Danilov, S., Wang,Q., Sidorenko, D., Fast, I., Rackow, T., Cabos, W., Jung, T. (2017). Ocean Modelling on a Mesh With Resolution Following the Local Rossby Radius. Journal of Advances in Modelling Earth Systems, 9:7, 2601-2614, https://doi.org/10.1002/2017MS001099

Simon, E., and Bertino, L. (2009). Application of the Gaussian anamorphosis to assimilation in a 3-D coupled physical-ecosystem model of the North Atlantic with the EnKF: a twin experiment. Ocean Science, 5, 495-510, 2009, https://doi.org/10.5194/os-5-495-2009

Smith, G.M., Roy, F., Reszka, M., Surcel Colan, D., He, Z., Deacu, D., Belanger, J.-M., Skachko,S., Liu, Y., Dupont, F., Lemieux, J.-F., Beaudoin, C., Tranchant, B., Drévillon, M., Garric, G., Testut, G.-E., Lellouche, J.-M., Pellerin, P., Ritchie, H., Lu, Y., Davidson, F., Buehner, M., Caya, A., Lajoie, M. (2016). Sea ice forecast verification in the Canadian Global Ice Ocean Prediction System. Quarterly Journal of the Royal Meteorological Society, 142(695), 659-671, https://doi.org/10.1002/qj.2555

Storto, A., and Andriopoulos, P., (2021). A new stochastic ocean physics package and its application to hybrid-covariance data assimilation. Quarterly Journal of the Royal Meteorological Society, 147, 1691-1725, https://doi.org/10.1002/qj.3990

Tchonang, B.C., Benkiran, M., Le Traon P.-Y., Van Gennip, S.J., Lellocuhe, J.M., Ruggiero, G. (2021). Assessing the impact of the assimilation of SWOT observations in a global high-resolution analysis and forecasting system. Part 2: Results. Frontiers in Marine Science, 8:687414, https://doi.org/10.3389/fmars.2021.687414

Thacker, W.C., Srinivasan, A., Iskandarani, M., Knio, O.M., Le Hénaff, M., (2012). Propagating boundary uncertainties using polynomial expansions. Ocean Modelling, 43-44, 52-63, http://dx.doi.org/10.1016/j.ocemod.2011.11.011

Thoppil, P.G., Frolov, S., Rowley, C.D. et al. (2021). Ensemble forecasting greatly expands the prediction horizon for ocean mesoscale variability. Communications Earth & Environment, 2, 89, https://doi.org/10.1038/s43247-021-00151-5

Toublanc, F., Ayoub, N.K., Lyard, F., Marsaleix, P., Allain, D.J., 2018. Tidal downscaling from the open ocean to the coast: a new approach applied to the Bay of Biscay. Ocean Modelling, 214, 16-32. http://dx.doi.org/10.1016/j.ocemod.2018.02.001

Usui, N., Ishizaki, S., Fujii, Y., Tsujino, H., Yasuda, T., Kamachi, M. (2006). Meteorological Research Institute multivariate ocean variational estimation (MOVE) system: Some early results. Advances in Space Research, 37(4), 806-822, https://doi.org/10.1016/j.asr.2005.09.022

Vervatis, V. D., Testut, C.E.. De Mey, P., Ayoub, N., Chanut, J., Quattrocchi, G. (2016). Data assimilative twin-experiment in a high-resolution Bay of Biscay configuration: 4D EnOI based on stochastic modelling of the wind forcing. Ocean Modelling, 100, 1-19, https://doi.org/10.1016/j.ocemod.2016.01.003

Vervatis, V.D., De Mey-Frémaux, P., Ayoub, N., Karagiorgos, J., Ciavatta, S., Brewin, R., Sofianos, S., (2021a). Assessment of a regional physical-biogeochemical stochastic ocean model. Part 2: empirical consistency. Ocean Modelling, 160, 101770, http://dx.doi.org/10.1016/j.ocemod.2021.101770

Vervatis, V. D., De Mey-Frémaux, P., Ayoub, N., Karagiorgos, J., Ghantous, M., Kailas, M., Testut, C.-E., and Sofianos, S., (2021b). Assessment of a regional physical-biogeochemical stochastic ocean model. Part 1: ensemble generation. Ocean Modelling, 160, 101781, https://doi.org/10.1016/j.ocemod.2021.101781

Waters, J., Lea, D.L., Martin, M.J., Mirouze, I., Weaver, A., While, J. (2014). Implementing a variational data assimilation system in an operational 1/4 degree global ocean model. Quarterly Journal of the Royal Meteorological Society, 141(687), 333-349, https://doi.org/10.1002/qj.2388

Zaron, E.D. (2011). Introduction to Ocean Data Assimilation. In: Schiller, A., Brassington, G. (eds) “Operational Oceanography in the 21st Century”. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0332-2_13

To start contributing, sharing knowledge and editing the WIKI, please login