Chapter 12

Challenges and future perspectives in ocean prediction


CHAPTER
COORDINATORS

Fraser Davidson
CHAPTER
AUTHORS

Enrique Alvarez Fanjul, Alain Arnaud, Stefania Ciliberti, Marie Drevillon, Ronan Fablet, Yosuke Fujii, Isabel Garcia-Hermosa, Stéphanie Guinehut, Emma Heslop, Villy Kourafalou, Julien Le Sommer, Matt Martin, Andrew M. Moore, Nadia Pinardi, Elizabeth Remy, Paul Sandery, Jun She, Marcos G. Sotillo, and Joaquin Tintorè

12.6 Opportunities of artificial intelligence for ocean forecasting systems

Recent developments in AI open many interesting opportunities in the context of operational oceanography and ocean forecasting systems. Operational forecasting systems are indeed not only based on observational data but also on algorithms. These algorithms gather and encode our understanding of physical systems and their dynamics, as well as of observation networks and associated uncertainties. They also reflect our collective knowledge on the relevant criteria for evaluating ocean data products. As in many activities relying on algorithms, the emergence of artificial intelligence, and especially of deep learning, opens a number of new possibilities, and is therefore the subject of growing interest in our community.

The ML generally refers to all the methods used to build algorithms whose components and parameters are not defined a priori but are trained according to a given objective. This field encompasses a large number of different methods, algorithms, and training strategies. It is a wide and fast-moving research field that includes, but is not restricted to, deep learning. ML is also intimately linked to a technological landscape and a software ecosystem in constant evolution. These technologies allow researchers and engineers to assemble complex algorithms from elementary building blocks in a very versatile and modular way, with interesting performances compared to state-of-the-art methods in many disciplines.

Applications of artificial intelligence are currently in vogue but, beyond the hype, artificial intelligence and machine learning can help us to overcome some of the current limitations of ocean forecasting systems. Ocean models and data assimilation methods, which are the scientific underpinning of current ocean forecasting systems, are indeed facing important challenges. Performing large ensemble simulations with full ocean models at increasingly fine spatial resolution is becoming more and more difficult computationally. We still do not know how to fully exploit hybrid computing architectures in our systems. We do not have a robust and plug-and-play framework to adapt their complexity to new custom applications. Although they are constantly being improved, our systems are also becoming increasingly difficult to modify and maintain. As developed in the following subsections, AI and ML may well help us to overcome these limitations and may even deeply impact on the structure of our operational systems.

12.6.1 Expected contributions of machine learning to ocean forecasting pipelines

Machine learning has long been used in ocean sciences and operational oceanography. However, these applications have so far mostly been limited to data retrieval algorithms upstream of forecasting systems (remote sensing, quality control), or to data processing and analysis in downstream applications (data mining, data fusion). In this context, ML algorithms have been essentially seen as black boxes without much physical basis. This perception is fundamentally renewed with the emergence of physics based machine learning and differentiable programming, which now allow to bridge physical sciences, scientific computing, uncertainty quantification, and machine learning (Carleo et al., 2019).

If we adopt a data-centric viewpoint, ocean forecasting systems can indeed be described as a succession of independent data processing steps in sequential pipelines (see Figure 4.1). These pipelines include the collection of past observational data, data-assimilation to reconstruct the current state of the ocean, forecasting with a physics-based model, and eventually the post-processing and dissemination to users. Data is being processed with algorithms at each step of the pipelines. It is now obvious that modern machine learning has the potential to impact each step of the data-processing pipelines of operational oceanography and ocean forecasting systems.

As mentioned above, many applications can be identified upstream or downstream of the core engines of ocean forecasting systems. Typical applications of ML upstream of core engines include, for instance, algorithms for alleviating observational noise, for retrieving parameters (Malmgren-Hansen, 2021), or for data quality control (Castelão, 2021). ML can thus be used for detecting outliers in Argo profiles (Maze et al., 2017). The range of possible downstream uses of core forecasting engines is even wider. ML is here expected to help design tailored services addressing key challenges (Persello et al., 2022), such as improving the prediction of Lagrangian drift or detecting anomalous extreme events.

However, what is probably more difficult to perceive is how machine learning may soon affect the core engine of ocean forecasting systems, and eventually all the services to users. Machine learning and differentiable programming are indeed opening many opportunities in computational fluid dynamics (Vinuesa and Brunton, 2021), while deeply renewing inverse methods in many areas (Cranmer et al., 2020). These recent advances could be leveraged for improving ocean models, e.g. for better accounting for unresolved processes (Brunton et al., 2020; Zanna and Bolton, 2021). They could also help improve data assimilation schemes (Bonavita and Laloyaux, 2020), or even possibly replace full inversion pipelines (Fablet et al., 2021). 

These recent advances open the possibility to design and train our core forecasting engines in such a way that their complexity and performance could be optimised for specific applications, ultimately improving our ability to meet the diversity of user needs.

12.6.2 Designing fully trainable ocean forecasting systems core engines

The core engines of current ocean forecasting systems are based on two types of objects that are still quite independent, namely ocean circulation models and data assimilation methods. Ocean models, data assimilation methods, and their implementation in forecasting systems are being continuously improved. But our core forecasting engines are still rather static in their design and structure, due to technological, organisational and historical reasons. For instance, ocean models are generally developed without taking into account how they will be implemented with data assimilation. As such, there is no guarantee of the optimality of the overall design of our systems and its fit for purpose in specific contexts.

Recent developments at the interface of machine learning and scientific computing could open the possibility of optimising the design of our core prediction engines according to predefined objectives. Indeed, beyond the improvements of specific components of ocean models or data assimilation schemes, the real benefit to be expected from machine learning in forecasting systems is the ability to optimise entire pipelines with end-to-end strategies. The term end-to-end here refers to the ability to optimise components of processing pipelines based on metrics measuring the performance of the entire pipeline. End-to-end strategies may eventually allow the design of fit for purpose and user-centric processing chains and products.

There are obviously technological conditions to realise this potential. Integrating trainable components in core forecasting engines is indeed greatly facilitated if these engines are already composed of independent modules with robust and stable interfaces. It is therefore necessary a gradual evolution to make the system more modular and composable. Moreover, if we want to take advantage of end-to-end strategies, the core engines should be fully differentiable. This would allow to back-propagate a misfit in the prediction into an increment in the parameters of the engine. This is only possible if the core engine is written in a high-level differentiable language or programming framework.

Such prerequisites may at first appear daunting, but a gradual evolution towards modular, composable, and differentiable core engines would also have important side benefits. First, this effort to redesign our core engines, may actually provide a viable strategy for exploiting upcoming computing architectures, starting from GPUs (Kochkov et al., 2021). It may also simplify the maintenance of our engines, as for instance the development of adjoint models (Hatfield et al., 2021), therefore speeding up the transfer from research to operation (R2O). Another benefit is also the built-in treatment of uncertainties, thanks to recent advances in probabilistic programming (van de Meent et al., 2021) and Bayesian Machine Learning 🔗6 .

12.6.3 Towards user-centric, ocean digital twins leveraging lightweight emulators

Looking further ahead, it can be guessed what future digital twins of the ocean will eventually look like. The integration of AI components may indeed gradually change the underlying paradigm of ocean forecasting systems. While current systems essentially implement “single-core engines” with a predefined level of complexity, future systems may be based on collections of core engines, tailored to the specific needs of particular users. These tailored core engines would instantiate core methods and building blocks in a versatile and user-centric way, providing fit for purpose tools and products to users.

Whatever form digital twins will eventually take, a key methodology will be the ability to train emulators of existing systems at reduced costs and with controlled complexity. As described above, a gradual evolution of our core forecasting engines will be needed for leveraging the full potential of AI and ML. This transition may in particular leverage DDEs. They provide approximations of pre-existing algorithms (Kasim et al., 2021) and can be integrated in data assimilation schemes (Nonnenmacher and Greenberg, 2021). As such, DDEs offer a good solution for building upon existing expertise and tools, while benefiting from the pace of scientific and technological advances in AI.

In conclusion, it appears that we are at the beginning of an exciting phase in the evolution of ocean forecasting systems, which could deeply transform the entire service offered to users. The integration of AI in ocean forecasting systems will require a gradual but profound change of the algorithms that constitute their underpinnings. This transition will take advantage of the wealth of expertise on ocean physics, observing networks, and user needs available in ocean forecasting centres. It will also require developing and nurturing new collaborations with the broader AI technological and scientific community, and benefit from the adoption of open science practices.

References

Anderson, J., Hoar, T. J., Raeder, K., Liu, H., Collins, N., Torn, R., et al. (2009). The data assimilation research test bed: a community facility. Bulletin of the American Meteorological Society, 90,1283-1296, https://doi.org/10.1175/2009BAMS2618.1

Barton, N., Metzger, E.J., Reynolds, C.A., Ruston, B., Rowley, C., Smedstad, O.M., Ridout, J.A., Wallcraft, A., Frolov, S., Hogan, P. and Janiga, M.A. (2021). The Navy’s Earth System Prediction Capability: A new global coupled atmosphere-ocean-sea ice prediction system designed for daily to subseasonal forecasting. Earth and Space Science, 8(4), e2020EA001199, https://doi.org/10.1029/2020EA001199

Beisiegel, N., Castro, C.E., and Behrens, J. (2021). Metrics for Performance Quantification of Adaptive Mesh Refinement. Journal of Scientific Computing, 87(1), 1-24, https://doi.org/10.1007/s10915-021-01423-0

Bishop, C.H. (2016). The GIGG-EnKF: ensemble Kalman filtering for highly skewed non-negative uncertainty distributions. Quarterly Journal of the Royal Meteorological Society,142(696),1395-1412, https://doi.org/10.1002/qj.2742

Bonavita, M., and Laloyaux, P. (2020). Machine learning for model error inference and correction. Journal of Advances in Modeling Earth Systems, 12(12), e2020MS002232, https://doi.org/10.1029/2020MS002232

Bonavita, M., Arcucci, R., Carrassi, A., Dueben, P., Geer, A. J., Le Saux, B., Longépé, N., Mathieu, P., and Raynaud, L. (2021). Machine Learning for Earth System Observation and Prediction. Bulletin of the American Meteorological Society, 102(4), E710-E716, https://doi.org/10.1175/BAMS-D-20-0307.1

Brajard, J., Carrassi, A., Bocquet, M. and Bertino, L. (2021). Combining data assimilation and machine learning to infer unresolved scale parametrization. Philosophical Transactions of the Royal Society A, 379(2194), https://doi.org/10.1098/rsta.2020.0086

Brassington, G.B., Martin, M.J., Tolman, H.L., Akella, S., Balmeseda, M., Chambers, C.R.S., Chassignet, E., Cummings, J.A., Drillet, Y., Jansen, P.A.E.M. and Laloyaux, P. (2015). Progress and challenges in short-to medium-range coupled prediction. Journal of Operational Oceanography, 8(sup2), s239-s258, https://doi.org/10.1080/1755876X.2015.1049875

Brunton, S. L., Noack, B. R., and Koumoutsakos, P. (2020). Machine learning for fluid mechanics. Annual Review of Fluid Mechanics, 52(1), 477-508 https://doi.org/10.1146/annurev-fluid-010719-060214

Buizza, R. (2021). Probabilistic view of numerical weather prediction and ensemble prediction. In “Uncertainties in Numerical Weather Prediction”, Editors: H. Ólafsson and J.-W. Bao, Elsevier, https://doi.org/10.1016/C2017-0-03301-3

Carleo, G., Cirac, I., Cranmer, K., Daudet, L., Schuld, M., Tishby, N., Vogt-Maranto, L., and Zdeborová, L. (2019). Machine learning and the physical sciences. Reviews of Modern Physics, 91(4), 045002, https://doi.org/10.1103/RevModPhys.91.045002

Capet, A., Fernández, V., She, J., Dabrowski, T., Umgiesser, G., Staneva, J., Mészáros, L., Campuzano, F., Ursella, L., Nolan, G., El Serafy, G. (2020). Operational Modeling Capacity in European Seas - An EuroGOOS Perspective and Recommendations for Improvement. Frontiers in Marine Science, 7,129, https://doi.org/10.3389/fmars.2020.00129

Castelão, G. P. (2021). A machine learning approach to quality control oceanographic data. Computers & Geosciences, 155, 104803, https://doi.org/10.1016/j.cageo.2021.104803

Chassignet, E.P., and Xu, X. (2021). On the Importance of High-Resolution in Large-Scale Ocean Models. Advances in Atmospheric Sciences, 38, 1621-1634, https://doi.org/10.1007/s00376-021-0385-7

Cranmer, K., Brehmer, J., and Louppe, G. (2020). The frontier of simulation-based inference. Proceedings of the National Academy of Sciences, 117(48), 30055-30062 https://doi.org/10.1073/pnas.1912789117

Ebert, E.E. (2009). Neighborhood verification - a strategy for rewarding close forecasts. Weather and Forecasting 24(6), 1498-1510, https://doi.org/10.1175/2009WAF2222251.1

Fablet, R., Chapron, B., Drumetz, L., Mémin, E., Pannekoucke, O., and Rousseau, F. (2021). Learning variational data assimilation models and solvers. Journal of Advances in Modeling Earth Systems, 13(10), e2021MS002572, https://doi.org/10.1029/2021MS002572

Fox-Kemper, B., Adcroft, A., Böning, C.W., Chassignet, E.P., Curchitser, E., Danabasoglu, G., Eden, C., England, M.H., Gerdes, R., Greatbatch, R.J., Griffies, S.M., Hallberg, R.W., Hanert, E., Heimbach, P., Hewitt, E.T., Hill, C.N., Komuro, Y., Legg, S., Le Sommer, J., Masina, S., Marsland, S.J., Penny, S.G., Qiao, F., Ringler, T.D., Treguier, A.M., Tsujino, H., Uotila, P., Yeager, S.G. (2019). Challenges and Prospects in Ocean Circulation Models. Frontiers in Marine Science, 6, https://doi.org/10.3389/fmars.2019.00065

Frolov, S., Reynolds, C.A., Alexander, M., Flatau, M., Barton, N.P., Hogan, P. and Rowley, C. (2021). Coupled Ocean-Atmosphere Covariances in Global Ensemble Simulations: Impact of an Eddy-Resolving Ocean. Monthly Weather Review, 149(5), 1193-1209, https://doi.org/10.1175/MWR-D-20-0352.1

Fujii, Y., Ishibashi, T., Yasuda, T., Takaya, Y., Kobayashi, C. and Ishikawa, I. (2021). Improvements in tropical precipitation and sea surface air temperature fields in a coupled atmosphere ocean data assimilation system. Quarterly Journal of the Royal Meteorological Society, 147(735), 1317-1343, https://doi.org/10.1002/qj.3973

Gao, Y., Tang, Y., Song, X. and Shen, Z. (2021). Parameter Estimation Based on a Local Ensemble Transform Kalman Filter Applied to El Niño-Southern Oscillation Ensemble Prediction. Remote Sensing, 13(19), 3923, https://doi.org/10.3390/rs13193923

Hatfield, S., Chantry, M., Dueben, P., Lopez, P., Geer, A., and Palmer, T. (2021). Building Tangent-Linear and Adjoint Models for Data Assimilation With Neural Networks. Journal of Advances in Modeling Earth Systems, 13(9), https://doi.org/10.1029/2021MS002521

Hawcroft, M., Lavender, S., Copsey, D., Milton, S., Rodríguez, J., Tennant, W., Webster, S. and Cowan, T. (2021). The benefits of ensemble prediction for forecasting an extreme event: The Queensland Floods of February 2019. Monthly Weather Review, 149(7), 2391-2408, https://doi.org/10.1175/MWR-D-20-0330.1

Herzfeld, M., Engwirda, D., and Rizwi, F. (2020). A coastal unstructured model using Voronoi meshes and C-grid staggering. Ocean Modelling, 148, 101599, https://doi.org/10.1016/j.ocemod.2020.101599

Hewitt, C. D., Garrett, N., Newton, P. (2017). Climateurope - Coordinating and supporting Europe’s knowledge base to enable better management of climate-related risks. Climate Services, 6, 77-79, https://doi.org/10.1016/j.cliser.2017.07.004

International Altimetry Team (2021). Altimetry for the future: Building on 25 years of progress. Advances in Space Research, 68, 319-363, https://doi.org/10.1016/j.asr.2021.01.022

Jacobs, G., D’Addezio, J.M., Ngodock, H. and Souopgui, I. (2021). Observation and model resolution implications to ocean prediction. Ocean Modelling, 159, 101760, https://doi.org/10.1016/j.ocemod.2021.101760

Kasim, M. F., Watson-Parris, D., Deaconu, L., Oliver, S., Hatfield, P., Froula, D. H., Gregori, G., Jarvis, M., Khatiwala, S., Korenaga, J., Topp-Mugglestone, J., Viezzer, E., and Vinko, S. M. (2021). Building high accuracy emulators for scientific simulations with deep neural architecture search. Machine Learning: Science and Technology, 3(1), 015013, https://doi.org/10.1088/2632-2153/ac3ffa

Kiss, A.E., Hogg, A.M., Hannah, N., Boeira Dias, F., Brassington, G.B., Chamberlain, M.A., Chapman, C., Dobrohotoff, P., Domingues, C.M., Duran, E.R. and England, M.H. (2020). ACCESS OM2 v1.0: A global ocean-sea ice model at three resolutions. Geosci. Model Dev., 13, 401–442, 2020, https://doi.org/10.5194/gmd-13-401-2020

Kitsios, V., Sandery, P., O’Kane, T.J. and Fiedler, R. (2021). Ensemble Kalman filter parameter estimation of ocean optical properties for reduced biases in a coupled general circulation model. Journal of Advances in Modeling Earth Systems, 13(2), https://doi.org/10.1029/2020MS002252

Kochkov, D., Smith, J. A., Alieva, A., Wang, Q., Brenner, M. P., and Hoyer, S. (2021). Machine learning–accelerated computational fluid dynamics. Proceedings of the National Academy of Sciences, 118(21), e2101784118, https://doi.org/10.1073/pnas.2101784118

Komaromi, W.A., Reinecke, P.A., Doyle, J.D., and Moskaitis, J.R. (2021). The Naval Research Laboratory’s Coupled Ocean–Atmosphere Mesoscale Prediction System-Tropical Cyclone Ensemble (COAMPS-TC Ensemble). Weather and Forecasting, 36(2), 499-517, https://doi.org/10.1175/WAF-D-20-0038.1

Kotsuki, S., and Bishop, C.H. (2022). Implementing Hybrid Background Error Covariance into the LETKF with Attenuation-based Localization: Experiments with a Simplified AGCM. Monthly Weather Review, 150(1), 283-302, https://doi.org/10.1175/MWR-D-21-0174.1

Le Sommer, J., Chassignet, E.P. Wallcraft, A.J. (2018). Ocean circulation modeling for operational oceanography: Current status and future challenges. In “New Frontiers in Operational Oceanography”, E. Chassignet, A. Pascual, J. Tintoré, and J. Verron, Eds., GODAE OceanView, 289-306, https://doi.org/10.17125/gov2018.ch12

Le Traon, P.Y., Reppucci, A., Alvarez Fanjul, E., Aouf, L., Behrens, A., Belmonte, M., Bentamy, A., Bertino, L., Brando, V.E., Kreiner, M.B., Benkiran, M., Carval, T., Ciliberti, S.A., Claustre, H., Clementi, E., Coppini, G., Cossarini, G., De Alfonso Alonso-Munoyerro, M., Delamarche, A., Dibarboure, G., Dinessen, F., Drevillon, M., Drillet, Y., Faugere, Y., Fernandez, V., Fleming, A., Garcia-Hermosa M.I., Sotillo, M.G., Garric, G., Gasparin, F., Giordan, C., Gehlen, M., Grégoire, M.L., Guinehut, S., Hamon, M., Harris, C., Hernandez, F., Hinkler, J.B., Hoyer, J., Karvonen, J., Kay, S., King, R., Lavergne, T., Lemieux-Dudon, B., Lima, L., Mao, C., Martin, M.J., Masina, S., Melet, A., Buongiorno Nardelli, B., Nolan, G., Pascual, A., Pistoia, J., Palazov, A., Piolle, J.F., Pujol, M.I., Pequignet, A.C., Peneva, E., Perez Gomez, B., Petit de la Villeon, L., Pinardi, N., Pisano, A., Pouliquen, S., Reid, R., Remy, E., Santoleri, R., Siddorn, J., She, J., Staneva, J., Stoffelen, A., Tonani, M., Vandenbulcke, L., von Schuckmann, K., Volpe, G., Wettre, C., Zacharioudaki, A. (2019) From Observation to Information and Users: The Copernicus Marine Service Perspective. Frontiers in Marine Science, 6, 234, https://doi.org/10.3389/fmars.2019.00234

Liu, T., Zhuang, Y., Tian, M., Pan, J., Zeng, T., Guo, Y., Yang, M. (2019). Parallel Implementation and Optimization of Regional Ocean Modeling System (ROMS) Based on Sunway SW26010 Many-core Processor. IEEE Access, 7, 146170-146182, doi:10.1109/ACCESS.2019.2944922

Lorenc, A., and Jardak, M. (2018). A comparison of hybrid variational data assimilation methods for global NWP. Quarterly Journal of the Royal Meteorological Society, 144(717), 2748-2760, https://doi.org/10.1002/qj.3401

Malmgren-Hansen, D. (2021). Deep learning for high-dimensional parameter retrieval. In: “Deep Learning for the Earth Sciences”, G. Camps-Valls, D. Tuia, X. X. Zhu, and M. Reichstein Eds., Wiley, https://doi.org/10.1002/9781119646181.ch16

Martín Míguez, B., Novellino, A., Vinci, M., Claus, S., Calewaert, J.-B., Vallius, H. et al. (2019). The European Marine Observation and Data Network (EMODnet): Visions and Roles of the Gateway to Marine Data in Europe. Frontiers in Marine Science, 6, 313, https://doi.org/10.3389/fmars.2019.00313

Maulik, R., Rao, V., Wang, J., Mengaldo, G., Constantinescu, E., Lusch, B., Balaprakash, P., Foster, I. and Kotamarthi, R. (2021). Efficient high-dimensional variational data assimilation with machine-learned reduced-order models. Geoscientific Model Development, https://doi.org/10.5194/gmd-2021-415

Maze, G., Mercier, H., Fablet, R., Tandeo, P., Lopez Radcenco, M., Lenca, P., Feucher, C., and Le Goff, C. (2017). Coherent heat patterns revealed by unsupervised classification of Argo temperature profiles in the North Atlantic Ocean. Progress in Oceanography, 151, 275-292, https://doi.org/10.1016/j.pocean.2016.12.008

Minamide, M., and Posselt, D.J. (2022). Using Ensemble Data Assimilation to Explore the Environmental Controls on the Initiation and Predictability of Moist Convection. Journal of the Atmospheric Sciences, 79(4), 1151-1169, https://doi.org/10.1175/JAS-D-21-0140.1

Mittal, S., Vetter, J.S. (2015). A Survey of CPU-GPU Heterogeneous Computing Techniques. ACM Computing Surveys, 47(4), 1-35, https://doi.org/10.1145/2788396

Nerger, L., Tang, Q., and Mu, L. (2020). Efficient ensemble data assimilation for coupled models with the Parallel Data Assimilation Framework: example of AWI-CM (AWI-CM-PDAF 1.0). Geoscientific Model Development, 13, 4305-4321, https://doi.org/10.5194/gmd-13-4305-2020

Nonnenmacher, M., and Greenberg, D. S. (2021). Deep emulators for differentiation, forecasting, and parametrization in Earth science simulators. Journal of Advances in Modeling Earth Systems, 13, e2021MS002554, https://doi.org/10.1029/2021MS002554

O’Kane, T.J., Sandery, P.A., Kitsios, V., Sakov, P., Chamberlain, M.A., Squire, D.T., Collier, M.A., Chapman, C.C., Fiedler, R., Harries, D. and Moore, T.S. (2021). CAFE60v1: A 60-year large ensemble climate reanalysis. Part II: Evaluation. Journal of Climate, 34(13), 5171-5194, https://doi.org/10.1175/JCLI-D-20-0518.1

O’Kane, T.J., Sandery, P.A., Monselesan, D.P., Sakov, P., Chamberlain, M.A., Matear, R.J., Collier, M.A., Squire, D.T. and Stevens, L. (2019). Coupled data assimilation and ensemble initialisation with application to multi-year ENSO prediction. Journal of Climate, 32(4), 997-1024, https://doi.org/10.1175/JCLI-D-18-0189.1

Palmer, T. N., Doblas-Reyes, F. J., Weisheimer, A., Rodwell, M. J. (2008). Toward Seamless Prediction: Calibration of Climate Change Projections Using Seasonal Forecasts. Bulletin of the American Meteorological Society, 89(4), 459-470, https://doi.org/10.1175/BAMS-89-4-459

Peng, G., Downs, R.R., Lacagnina, C., Ramapriyan, H., Ivánová, I., Moroni, D., Wei, Y., Larnicol, G., Wyborn, L., Goldberg, M., Schulz, J., Bastrakova, I., Ganske, A., Bastin, L., Khalsa, S.J.S., Wu, M., Shie, C.-L., Ritchey, N., Jones, D., Habermann, T., Lief, C., Maggio, I., Albani, M., Stall, S., Zhou, L., Drévillon, M., Champion, S., Hou, C.S., Doblas-Reyes, F., Lehnert, K., Robinson, E. and Bugbee, K., (2021a). Call to Action for Global Access to and Harmonization of Quality Information of Individual Earth Science Datasets. Data Science Journal, 20(1), 19, http://doi.org/10.5334/dsj-2021-019

Peng, G., Lacagnina, C., Ivánová, I., Downs, R.R., Ramapriyan, H., Ganske, A., Jones, D. et al. (2021b). International Community Guidelines for Sharing and Reusing Quality Information of Individual Earth Science Datasets. AGU Fall Meeting, 1-17 December 2020, https://doi.org/10.1002/essoar.10508481.1

Persello, C., Wegner, J. D., Hänsch, R., Tuia, D., Ghamisi, P., Koeva, M., and Camps-Valls, G. (2022). Deep learning and earth observation to support the sustainable development goals. IEEE Geoscience and Remote Sensing Magazine, 2-30, https://doi.org/10.48550/arXiv.2112.11367

Posselt, D.J., Bishop, C.H. (2018). Nonlinear Data Assimilation for Clouds and Precipitation using a Gamma-Inverse Gamma Ensemble Filter. Quarterly Journal of the Royal Meteorological Society,144(716), 2331-2349, https://doi.org/10.1002/qj.3374

Quinn, C., O’Kane, T.J., Kitsios, V. (2020). Application of a local attractor dimension to reduced space strongly coupled data assimilation for chaotic multiscale systems. Nonlinear Processes in Geophysics, 27 (1), 51-74, https://doi.org/10.5194/npg-27-51-2020

Robinson A. R., and K. Brink (Eds.). 2006. The Sea. Vols. 10 to 14. Harvard University Press.

Roemmich, D., Alford, M.J., Hervé, C., Johnson, K., King, B., Moum, J., Oke, P., Owens, W.B., Pouliquen, S., Purkey, S., Scanderbeg, M., Suga, T., Wijffels, S., Zilberman, N., Bakker, D., Baringer, M., Belbeoch, M., Bittig, H.C., Boss, E., Calil, P., Carse, F., Carval, T., Chai, F., Conchubhair, D.Ó., d’Ortenzio, F., Dall’Olmo, G., Desbruyeres, D., Fennel, K., Fer, I., Ferrari, R., Forget, G., Freeland, H., Fujiki, T., Gehlen, M., Greenan, B., Hallberg, R., Hibiya, T., Hosoda, S., Jayne, S., Jochum, M., Johnson, G.C., Kang, K., Kolodziejczyk, N., Körtzinger, A., Le Traon, P.-Y., Lenn, Y.-D., Maze, G., Mork, K.A., Morris, T., Nagai T., Nash, J., Garabato, A.N., Olsen, A., Pattabhi, R.R., Prakash, S., Riser, S., Schmechtig, C., Schmid, C., Shroyer, E., Sterl, A., Sutton, P., Talley, L., Tanhua, T., Thierry, V., Thomalla, S., Toole, J., Troisi, A., Trull, T.W., Turton, J., Velez-Belchi, P. J., Walczowski, W., Wang, H., Wanninkhof, R., Waterhouse, A.F., Waterman, S., Watson, A., Wilson, C., Wong, A.P.S., Xu, J., Yasuda, I.(2019). On the Future of Argo: A Global, Full-Depth, Multi-Disciplinary Array. Frontiers in Marine Science, 6, https://doi.org/10.3389/fmars.2019.00439

Sakov, P. (2014). EnKF-C User Guide, https://doi.org/10.48550/arXiv.1410.1233

Sakov, P.,Haussaire, J.-M., Bocquet, M. (2017). An iterative ensemble Kalman filterin presence of additivemodel error. Quarterly Journal of the Royal Meteorological Society,144(713), https://doi.org/10.48550/arXiv.1711.06110

Sandery, P., Brassington, G., Colberg, F., Sakov, P., Herzfeld, M., Maes, C., Tuteja, N. (2019). An ocean reanalysis of the western Coral Sea and Great Barrier Reef. Ocean Modelling, 144, 101495, http://dx.doi.org/10.1016/j.ocemod.2019.101495

Sandery, P., O’Kane, T., Kitsios, V., and Sakov, P. (2020). Climate model state estimation using variants of EnKF coupled data assimilation. Monthly Weather Review,148(6), 2411-2431, https://doi.org/10.1175/MWR-D-18-0443.1

She, J, Muñiz Piniella, Á, Benedetti-Cecchi, L, Boehme, L, Boero, F, Christensen, A, et al. (2019). An integrated approach to coastal and biological observations. Frontiers in Marine Science, 6, 314, https://doi.org/10.3389/fmars.2019.00314

She, J., Allen, I., Buch, E., Crise, A., Johannessen, J.A., Le Traon P.-Y. et al. (2016). Developing European operational oceanography for Blue Growth, climate change adaptation and mitigation, and ecosystem-based management. Ocean Science, 12, 953-976, https://doi.org/10.5194/os-12-953-2016

She, J., Bethers, U., Cardin, V., Christensen, K.H., Dabrowski, T., et al. (2021). Develop EuroGOOS marine climate service with a seamless earth system approach. 9th EuroGOOS International conference, Shom; Ifremer; EuroGOOS AISBL, May 2021, Brest (Virtual), France, 554-561.

Shriver, J. F., Arbic, B. K., Richman, J. G., Ray, R. D., Metzger, E. J., Wallcraft, A. J., Timko, P. G. (2012), An evaluation of the barotropic and internal tides in a high-resolution global ocean circulation model. Journal of Geophysical Research: Oceans, 117(C10), https://doi.org/10.1029/2012JC008170

Sotillo, M.G., Garcia-Hermosa, I., Drévillon, M., Régnier, C., Szczypta, C., Hernandez, F., Melet, A., Le Traon, P-Y. (2021). Communicating CMEMS Product Quality: evolution & achievements along Copernicus-1 (2015-2021). Included in “Special Issue: The Copernicus Marine Service from 2015 to 2021: six years of achievements”, by LeTraon et al., Mercator Océan Journal #57, https://doi.org/10.48670/moi-cafr-n813

Sun, Y., Bao, W., Valk, K., Brauer, C. C., Sumihar, J., and Weerts, A. H. (2020). Improving forecast skill of lowland hydrological models using ensemble Kalman filter and unscented Kalman filter. Water Resources Research, 56, e2020WR027468, https://doi.org/10.1029/2020WR027468

van de Meent, J.-W., Paige, B., Yang, H., AND Wood, F. (2021). An introduction to probabilistic programming, https://doi.org/10.48550/arXiv.1809.10756

van Leeuwen, S., Tett, P., Mills, D., van der Molen, J. (2015). Stratified and non stratified areas in the North Sea: Long-term variability and biological and policy implications. Journal of Geophysical Research: Oceans, 120(7), 4670-4686, https://doi.org/10.1002/2014JC010485

Vinuesa, R., and Brunton, S. L. (2021). The potential of machine learning to enhance computational fluid dynamics, https://doi.org/10.48550/arXiv.2110.02085

Weyn, J.A., Durran, D.R., Caruana, R., Cresswell-Clay, N. (2021). Sub-Seasonal Forecasting With a Large Ensemble of Deep-Learning Weather Prediction Models. Journal of Advances in Modeling Earth Systems, 13(7), e2021MS002502, https://doi.org/10.1029/2021MS002502

WMO (2015). Seamless prediction of the Earth system: from minutes to months. WMO-No. 1156, ISBN 978- 92-63-11156-2.

Xu, S., Huang, X., Oey, L.-Y., Xu, F., Fu, H., Zhang, Y., Yang, G. (2015). POM.gpu-v1.0: a GPU-based Princeton Ocean Model. Geoscientific Model Development, 8, 2815-2827, https://doi.org/10.5194/gmd-8-2815-2015

Zanna, L., and Bolton, T. (2021). Deep learning of unresolved turbulent ocean processes in climate models. In: “Deep Learning for the Earth Sciences”, G. Camps-Valls, D. Tuia, X. X. Zhu, and M. Reichstein (Eds.), Wiley https://doi.org/10.1002/9781119646181.ch20

Zhang, L., Delworth, T.L., Jia, L. (2017). Diagnosis of Decadal Predictability of Southern Ocean Sea Surface Temperature in the GFDL CM2.1 Model. Journal of Climate, 30(16), 6309-6328, https://doi.org/10.1175/JCLI-D-16-0537.1

Chapter 12

Challenges and future perspectives in ocean prediction

To start contributing, sharing knowledge and editing the WIKI, please login