Chapter 12

Challenges and future perspectives in ocean prediction


CHAPTER
COORDINATORS

Fraser Davidson
CHAPTER
AUTHORS

Enrique Alvarez Fanjul, Alain Arnaud, Stefania Ciliberti, Marie Drevillon, Ronan Fablet, Yosuke Fujii, Isabel Garcia-Hermosa, Stéphanie Guinehut, Emma Heslop, Villy Kourafalou, Julien Le Sommer, Matt Martin, Andrew M. Moore, Nadia Pinardi, Elizabeth Remy, Paul Sandery, Jun She, Marcos G. Sotillo, and Joaquin Tintorè

12.5 Future of ensemble prediction systems

Numerical ocean, weather, seasonal and climate forecasting systems across the world are tending towards becoming coupled ensemble data assimilation prediction systems (Brassington et al., 2015; Barton, 2021; Buizza, 2021; Frolov, 2021; Fujii et al., 2021; Komaromi, 2021), including a better coverage of the inter-relationships among the geophysical domains of the ocean, atmosphere, sea ice, land, and biogeochemistry (Sandery et al., 2020; O’Kane et al., 2021). Forecasting systems are also increasingly applied to finer spatiotemporal scales.

The need to quantify the probability distribution of forecast error in coupled and downscaled models, as well as the reliability and accuracy of forecasts, will be served well by ensemble prediction systems, such as those using the EnKF (e.g., Sandery et al., 2020; O’Kane et al., 2021; Sun et al., 2020; Minamide and Posselt, 2022).

Ensemble prediction systems enable synthesis of models and observations leading to data that can be used to provide best estimates of geophysical variables and quantify the dynamics of their uncertainty (Sandery et al., 2019) (Figure 12.2). Uncertainty quantification will become as important in forecasts as the forecasts themselves, providing guidance on reliability and insight into fast growing disturbances in the geophysical environment. As described in other sections of this chapter, advances in ensemble prediction will also be coupled to improvements in models, observations, data assimilation, computer resources and technology.

Figure 12.2. Quantifying the dynamics of system uncertainty. This image shows forecast ensemble spread in sea surface temperature (K) and sea ice concentration on 28th September 2017 (in observation space) from a 96 member, 0.1o horizontal resolution coupled ocean-sea-ice EnKF prediction system, known as ACCESS-OM2-EnKF-C (Sakov, 2014; Kiss et al., 2020). SST spread is related to uncertainty: the forecast dynamical state of Tropical Instability Waves and sea ice spread shows that forecast uncertainty at this time of year is greatest in certain areas.

There is an associated loss of predictability towards finer scales (Jacobs et al., 2021). Prediction systems using coupled data assimilation and finer spatial resolution will require larger ensembles, more frequent, representative and accurate observations, and improved data assimilation practices. Extending the range of predictability will be facilitated by advances to ensemble prediction systems. Operational ensemble systems will incorporate improved methods for data assimilation in the presence of model error and strong non-linearities, such as the iterative EnKF (Sakov et al., 2017), hybrid covariance methods (Kotsuki and Bishop, 2022), and assimilation of non-linear observations such as water vapour, cloud, precipitation, sea-ice, and phytoplankton concentration (Bishop, 2016; Posselt and Bishop, 2018).

Combining ensemble prediction with machine learning and artificial intelligence will also play an increasing role in forecasting (Brajard et al., 2021; Weyn et al., 2021). In some instances, forward models with reduced order low dimensional and data-driven differentiable emulators (Maulik et al., 2021) will be able to replace full non-linear models to reduce computational cost and assist in searches for initial conditions, patterns, parameterisations and ensemble perturbations appropriate for particular forecasts. Ensemble prediction systems will be used to identify initial states, forcing and dynamics that contribute to regime transitions (O’Kane et al 2019; Quinn et al., 2020) and in the forecasting of extreme events (Hawcroft et al., 2021).

Forecast model parameters will continue to be poorly known, subject to uncertainty, dependent on grid resolution, and a source of model bias requiring joint state and parameter estimation (Kitsios et al., 2021). With this approach, predictability of certain geophysical processes may be improved (Zhang et al., 2017). Future ensemble prediction systems will be optimised with model parameters that minimise bias in the ensemble mean but that adequately represent the parameter’s error probability distribution in the ensemble (Gao et al., 2021). Coupled model forecasts will be able to be optimised in state and parameter space. Model error minimization will be multi-variate and simultaneous across the geophysical realms with respect to the global network of observations (Sandery et al., 2020).

Ensemble prediction systems will play an increasing role in the future design of observation systems (Sandery et al., 2019 and 2020). Coupled ensemble prediction provides insight into unobserved variables through cross domain covariances. Future applications of coupled ensemble prediction systems will provide improved reanalysis products with tighter constraints on carbon, sea-ice volume, air-sea fluxes, ocean heat storage and transport, using optimally designed observing systems.

Unstructured mesh models that enhance resolution towards the coastline for detailed hydrodynamic and biogeochemical forecasting of coastal and river, lake and estuarine circulation processes (Herzfeld et al., 2020) will be run as ensemble prediction systems. Meshes that adapt resolution according to areas of most rapidly growing geophysical instabilities, such as in tropical cyclone, tsunami, and flood forecasting (Beisiegel et al., 2021) will also be run as ensemble prediction systems.

As systems continue to be developed, improving the accuracy of forecast error covariance estimates will deliver coupled downscaled analyses and forecasts with greater skill. With advances to observation systems, relatively higher resolution monitoring and ensemble prediction of sea-ice, waves, currents, sea-levels, temperatures, biogeochemistry, and the tracing of river plumes containing sediments, contaminants, and pollutants may be made possible using ensemble prediction systems. Access to future higher resolution ocean in-situ and satellite data may enable prediction of the ocean sub-mesoscale circulation and near-field currents for search and rescue, ship-routing, safety, and recreation. As science, technology, networking, and connectivity improves, real-time assimilation of user-supplied observations into ensemble prediction systems to augment local predictability may become possible.

References

Anderson, J., Hoar, T. J., Raeder, K., Liu, H., Collins, N., Torn, R., et al. (2009). The data assimilation research test bed: a community facility. Bulletin of the American Meteorological Society, 90,1283-1296, https://doi.org/10.1175/2009BAMS2618.1

Barton, N., Metzger, E.J., Reynolds, C.A., Ruston, B., Rowley, C., Smedstad, O.M., Ridout, J.A., Wallcraft, A., Frolov, S., Hogan, P. and Janiga, M.A. (2021). The Navy’s Earth System Prediction Capability: A new global coupled atmosphere-ocean-sea ice prediction system designed for daily to subseasonal forecasting. Earth and Space Science, 8(4), e2020EA001199, https://doi.org/10.1029/2020EA001199

Beisiegel, N., Castro, C.E., and Behrens, J. (2021). Metrics for Performance Quantification of Adaptive Mesh Refinement. Journal of Scientific Computing, 87(1), 1-24, https://doi.org/10.1007/s10915-021-01423-0

Bishop, C.H. (2016). The GIGG-EnKF: ensemble Kalman filtering for highly skewed non-negative uncertainty distributions. Quarterly Journal of the Royal Meteorological Society,142(696),1395-1412, https://doi.org/10.1002/qj.2742

Bonavita, M., and Laloyaux, P. (2020). Machine learning for model error inference and correction. Journal of Advances in Modeling Earth Systems, 12(12), e2020MS002232, https://doi.org/10.1029/2020MS002232

Bonavita, M., Arcucci, R., Carrassi, A., Dueben, P., Geer, A. J., Le Saux, B., Longépé, N., Mathieu, P., and Raynaud, L. (2021). Machine Learning for Earth System Observation and Prediction. Bulletin of the American Meteorological Society, 102(4), E710-E716, https://doi.org/10.1175/BAMS-D-20-0307.1

Brajard, J., Carrassi, A., Bocquet, M. and Bertino, L. (2021). Combining data assimilation and machine learning to infer unresolved scale parametrization. Philosophical Transactions of the Royal Society A, 379(2194), https://doi.org/10.1098/rsta.2020.0086

Brassington, G.B., Martin, M.J., Tolman, H.L., Akella, S., Balmeseda, M., Chambers, C.R.S., Chassignet, E., Cummings, J.A., Drillet, Y., Jansen, P.A.E.M. and Laloyaux, P. (2015). Progress and challenges in short-to medium-range coupled prediction. Journal of Operational Oceanography, 8(sup2), s239-s258, https://doi.org/10.1080/1755876X.2015.1049875

Brunton, S. L., Noack, B. R., and Koumoutsakos, P. (2020). Machine learning for fluid mechanics. Annual Review of Fluid Mechanics, 52(1), 477-508 https://doi.org/10.1146/annurev-fluid-010719-060214

Buizza, R. (2021). Probabilistic view of numerical weather prediction and ensemble prediction. In “Uncertainties in Numerical Weather Prediction”, Editors: H. Ólafsson and J.-W. Bao, Elsevier, https://doi.org/10.1016/C2017-0-03301-3

Carleo, G., Cirac, I., Cranmer, K., Daudet, L., Schuld, M., Tishby, N., Vogt-Maranto, L., and Zdeborová, L. (2019). Machine learning and the physical sciences. Reviews of Modern Physics, 91(4), 045002, https://doi.org/10.1103/RevModPhys.91.045002

Capet, A., Fernández, V., She, J., Dabrowski, T., Umgiesser, G., Staneva, J., Mészáros, L., Campuzano, F., Ursella, L., Nolan, G., El Serafy, G. (2020). Operational Modeling Capacity in European Seas - An EuroGOOS Perspective and Recommendations for Improvement. Frontiers in Marine Science, 7,129, https://doi.org/10.3389/fmars.2020.00129

Castelão, G. P. (2021). A machine learning approach to quality control oceanographic data. Computers & Geosciences, 155, 104803, https://doi.org/10.1016/j.cageo.2021.104803

Chassignet, E.P., and Xu, X. (2021). On the Importance of High-Resolution in Large-Scale Ocean Models. Advances in Atmospheric Sciences, 38, 1621-1634, https://doi.org/10.1007/s00376-021-0385-7

Cranmer, K., Brehmer, J., and Louppe, G. (2020). The frontier of simulation-based inference. Proceedings of the National Academy of Sciences, 117(48), 30055-30062 https://doi.org/10.1073/pnas.1912789117

Ebert, E.E. (2009). Neighborhood verification - a strategy for rewarding close forecasts. Weather and Forecasting 24(6), 1498-1510, https://doi.org/10.1175/2009WAF2222251.1

Fablet, R., Chapron, B., Drumetz, L., Mémin, E., Pannekoucke, O., and Rousseau, F. (2021). Learning variational data assimilation models and solvers. Journal of Advances in Modeling Earth Systems, 13(10), e2021MS002572, https://doi.org/10.1029/2021MS002572

Fox-Kemper, B., Adcroft, A., Böning, C.W., Chassignet, E.P., Curchitser, E., Danabasoglu, G., Eden, C., England, M.H., Gerdes, R., Greatbatch, R.J., Griffies, S.M., Hallberg, R.W., Hanert, E., Heimbach, P., Hewitt, E.T., Hill, C.N., Komuro, Y., Legg, S., Le Sommer, J., Masina, S., Marsland, S.J., Penny, S.G., Qiao, F., Ringler, T.D., Treguier, A.M., Tsujino, H., Uotila, P., Yeager, S.G. (2019). Challenges and Prospects in Ocean Circulation Models. Frontiers in Marine Science, 6, https://doi.org/10.3389/fmars.2019.00065

Frolov, S., Reynolds, C.A., Alexander, M., Flatau, M., Barton, N.P., Hogan, P. and Rowley, C. (2021). Coupled Ocean-Atmosphere Covariances in Global Ensemble Simulations: Impact of an Eddy-Resolving Ocean. Monthly Weather Review, 149(5), 1193-1209, https://doi.org/10.1175/MWR-D-20-0352.1

Fujii, Y., Ishibashi, T., Yasuda, T., Takaya, Y., Kobayashi, C. and Ishikawa, I. (2021). Improvements in tropical precipitation and sea surface air temperature fields in a coupled atmosphere ocean data assimilation system. Quarterly Journal of the Royal Meteorological Society, 147(735), 1317-1343, https://doi.org/10.1002/qj.3973

Gao, Y., Tang, Y., Song, X. and Shen, Z. (2021). Parameter Estimation Based on a Local Ensemble Transform Kalman Filter Applied to El Niño-Southern Oscillation Ensemble Prediction. Remote Sensing, 13(19), 3923, https://doi.org/10.3390/rs13193923

Hatfield, S., Chantry, M., Dueben, P., Lopez, P., Geer, A., and Palmer, T. (2021). Building Tangent-Linear and Adjoint Models for Data Assimilation With Neural Networks. Journal of Advances in Modeling Earth Systems, 13(9), https://doi.org/10.1029/2021MS002521

Hawcroft, M., Lavender, S., Copsey, D., Milton, S., Rodríguez, J., Tennant, W., Webster, S. and Cowan, T. (2021). The benefits of ensemble prediction for forecasting an extreme event: The Queensland Floods of February 2019. Monthly Weather Review, 149(7), 2391-2408, https://doi.org/10.1175/MWR-D-20-0330.1

Herzfeld, M., Engwirda, D., and Rizwi, F. (2020). A coastal unstructured model using Voronoi meshes and C-grid staggering. Ocean Modelling, 148, 101599, https://doi.org/10.1016/j.ocemod.2020.101599

Hewitt, C. D., Garrett, N., Newton, P. (2017). Climateurope - Coordinating and supporting Europe’s knowledge base to enable better management of climate-related risks. Climate Services, 6, 77-79, https://doi.org/10.1016/j.cliser.2017.07.004

International Altimetry Team (2021). Altimetry for the future: Building on 25 years of progress. Advances in Space Research, 68, 319-363, https://doi.org/10.1016/j.asr.2021.01.022

Jacobs, G., D’Addezio, J.M., Ngodock, H. and Souopgui, I. (2021). Observation and model resolution implications to ocean prediction. Ocean Modelling, 159, 101760, https://doi.org/10.1016/j.ocemod.2021.101760

Kasim, M. F., Watson-Parris, D., Deaconu, L., Oliver, S., Hatfield, P., Froula, D. H., Gregori, G., Jarvis, M., Khatiwala, S., Korenaga, J., Topp-Mugglestone, J., Viezzer, E., and Vinko, S. M. (2021). Building high accuracy emulators for scientific simulations with deep neural architecture search. Machine Learning: Science and Technology, 3(1), 015013, https://doi.org/10.1088/2632-2153/ac3ffa

Kiss, A.E., Hogg, A.M., Hannah, N., Boeira Dias, F., Brassington, G.B., Chamberlain, M.A., Chapman, C., Dobrohotoff, P., Domingues, C.M., Duran, E.R. and England, M.H. (2020). ACCESS OM2 v1.0: A global ocean-sea ice model at three resolutions. Geosci. Model Dev., 13, 401–442, 2020, https://doi.org/10.5194/gmd-13-401-2020

Kitsios, V., Sandery, P., O’Kane, T.J. and Fiedler, R. (2021). Ensemble Kalman filter parameter estimation of ocean optical properties for reduced biases in a coupled general circulation model. Journal of Advances in Modeling Earth Systems, 13(2), https://doi.org/10.1029/2020MS002252

Kochkov, D., Smith, J. A., Alieva, A., Wang, Q., Brenner, M. P., and Hoyer, S. (2021). Machine learning–accelerated computational fluid dynamics. Proceedings of the National Academy of Sciences, 118(21), e2101784118, https://doi.org/10.1073/pnas.2101784118

Komaromi, W.A., Reinecke, P.A., Doyle, J.D., and Moskaitis, J.R. (2021). The Naval Research Laboratory’s Coupled Ocean–Atmosphere Mesoscale Prediction System-Tropical Cyclone Ensemble (COAMPS-TC Ensemble). Weather and Forecasting, 36(2), 499-517, https://doi.org/10.1175/WAF-D-20-0038.1

Kotsuki, S., and Bishop, C.H. (2022). Implementing Hybrid Background Error Covariance into the LETKF with Attenuation-based Localization: Experiments with a Simplified AGCM. Monthly Weather Review, 150(1), 283-302, https://doi.org/10.1175/MWR-D-21-0174.1

Le Sommer, J., Chassignet, E.P. Wallcraft, A.J. (2018). Ocean circulation modeling for operational oceanography: Current status and future challenges. In “New Frontiers in Operational Oceanography”, E. Chassignet, A. Pascual, J. Tintoré, and J. Verron, Eds., GODAE OceanView, 289-306, https://doi.org/10.17125/gov2018.ch12

Le Traon, P.Y., Reppucci, A., Alvarez Fanjul, E., Aouf, L., Behrens, A., Belmonte, M., Bentamy, A., Bertino, L., Brando, V.E., Kreiner, M.B., Benkiran, M., Carval, T., Ciliberti, S.A., Claustre, H., Clementi, E., Coppini, G., Cossarini, G., De Alfonso Alonso-Munoyerro, M., Delamarche, A., Dibarboure, G., Dinessen, F., Drevillon, M., Drillet, Y., Faugere, Y., Fernandez, V., Fleming, A., Garcia-Hermosa M.I., Sotillo, M.G., Garric, G., Gasparin, F., Giordan, C., Gehlen, M., Grégoire, M.L., Guinehut, S., Hamon, M., Harris, C., Hernandez, F., Hinkler, J.B., Hoyer, J., Karvonen, J., Kay, S., King, R., Lavergne, T., Lemieux-Dudon, B., Lima, L., Mao, C., Martin, M.J., Masina, S., Melet, A., Buongiorno Nardelli, B., Nolan, G., Pascual, A., Pistoia, J., Palazov, A., Piolle, J.F., Pujol, M.I., Pequignet, A.C., Peneva, E., Perez Gomez, B., Petit de la Villeon, L., Pinardi, N., Pisano, A., Pouliquen, S., Reid, R., Remy, E., Santoleri, R., Siddorn, J., She, J., Staneva, J., Stoffelen, A., Tonani, M., Vandenbulcke, L., von Schuckmann, K., Volpe, G., Wettre, C., Zacharioudaki, A. (2019) From Observation to Information and Users: The Copernicus Marine Service Perspective. Frontiers in Marine Science, 6, 234, https://doi.org/10.3389/fmars.2019.00234

Liu, T., Zhuang, Y., Tian, M., Pan, J., Zeng, T., Guo, Y., Yang, M. (2019). Parallel Implementation and Optimization of Regional Ocean Modeling System (ROMS) Based on Sunway SW26010 Many-core Processor. IEEE Access, 7, 146170-146182, doi:10.1109/ACCESS.2019.2944922

Lorenc, A., and Jardak, M. (2018). A comparison of hybrid variational data assimilation methods for global NWP. Quarterly Journal of the Royal Meteorological Society, 144(717), 2748-2760, https://doi.org/10.1002/qj.3401

Malmgren-Hansen, D. (2021). Deep learning for high-dimensional parameter retrieval. In: “Deep Learning for the Earth Sciences”, G. Camps-Valls, D. Tuia, X. X. Zhu, and M. Reichstein Eds., Wiley, https://doi.org/10.1002/9781119646181.ch16

Martín Míguez, B., Novellino, A., Vinci, M., Claus, S., Calewaert, J.-B., Vallius, H. et al. (2019). The European Marine Observation and Data Network (EMODnet): Visions and Roles of the Gateway to Marine Data in Europe. Frontiers in Marine Science, 6, 313, https://doi.org/10.3389/fmars.2019.00313

Maulik, R., Rao, V., Wang, J., Mengaldo, G., Constantinescu, E., Lusch, B., Balaprakash, P., Foster, I. and Kotamarthi, R. (2021). Efficient high-dimensional variational data assimilation with machine-learned reduced-order models. Geoscientific Model Development, https://doi.org/10.5194/gmd-2021-415

Maze, G., Mercier, H., Fablet, R., Tandeo, P., Lopez Radcenco, M., Lenca, P., Feucher, C., and Le Goff, C. (2017). Coherent heat patterns revealed by unsupervised classification of Argo temperature profiles in the North Atlantic Ocean. Progress in Oceanography, 151, 275-292, https://doi.org/10.1016/j.pocean.2016.12.008

Minamide, M., and Posselt, D.J. (2022). Using Ensemble Data Assimilation to Explore the Environmental Controls on the Initiation and Predictability of Moist Convection. Journal of the Atmospheric Sciences, 79(4), 1151-1169, https://doi.org/10.1175/JAS-D-21-0140.1

Mittal, S., Vetter, J.S. (2015). A Survey of CPU-GPU Heterogeneous Computing Techniques. ACM Computing Surveys, 47(4), 1-35, https://doi.org/10.1145/2788396

Nerger, L., Tang, Q., and Mu, L. (2020). Efficient ensemble data assimilation for coupled models with the Parallel Data Assimilation Framework: example of AWI-CM (AWI-CM-PDAF 1.0). Geoscientific Model Development, 13, 4305-4321, https://doi.org/10.5194/gmd-13-4305-2020

Nonnenmacher, M., and Greenberg, D. S. (2021). Deep emulators for differentiation, forecasting, and parametrization in Earth science simulators. Journal of Advances in Modeling Earth Systems, 13, e2021MS002554, https://doi.org/10.1029/2021MS002554

O’Kane, T.J., Sandery, P.A., Kitsios, V., Sakov, P., Chamberlain, M.A., Squire, D.T., Collier, M.A., Chapman, C.C., Fiedler, R., Harries, D. and Moore, T.S. (2021). CAFE60v1: A 60-year large ensemble climate reanalysis. Part II: Evaluation. Journal of Climate, 34(13), 5171-5194, https://doi.org/10.1175/JCLI-D-20-0518.1

O’Kane, T.J., Sandery, P.A., Monselesan, D.P., Sakov, P., Chamberlain, M.A., Matear, R.J., Collier, M.A., Squire, D.T. and Stevens, L. (2019). Coupled data assimilation and ensemble initialisation with application to multi-year ENSO prediction. Journal of Climate, 32(4), 997-1024, https://doi.org/10.1175/JCLI-D-18-0189.1

Palmer, T. N., Doblas-Reyes, F. J., Weisheimer, A., Rodwell, M. J. (2008). Toward Seamless Prediction: Calibration of Climate Change Projections Using Seasonal Forecasts. Bulletin of the American Meteorological Society, 89(4), 459-470, https://doi.org/10.1175/BAMS-89-4-459

Peng, G., Downs, R.R., Lacagnina, C., Ramapriyan, H., Ivánová, I., Moroni, D., Wei, Y., Larnicol, G., Wyborn, L., Goldberg, M., Schulz, J., Bastrakova, I., Ganske, A., Bastin, L., Khalsa, S.J.S., Wu, M., Shie, C.-L., Ritchey, N., Jones, D., Habermann, T., Lief, C., Maggio, I., Albani, M., Stall, S., Zhou, L., Drévillon, M., Champion, S., Hou, C.S., Doblas-Reyes, F., Lehnert, K., Robinson, E. and Bugbee, K., (2021a). Call to Action for Global Access to and Harmonization of Quality Information of Individual Earth Science Datasets. Data Science Journal, 20(1), 19, http://doi.org/10.5334/dsj-2021-019

Peng, G., Lacagnina, C., Ivánová, I., Downs, R.R., Ramapriyan, H., Ganske, A., Jones, D. et al. (2021b). International Community Guidelines for Sharing and Reusing Quality Information of Individual Earth Science Datasets. AGU Fall Meeting, 1-17 December 2020, https://doi.org/10.1002/essoar.10508481.1

Persello, C., Wegner, J. D., Hänsch, R., Tuia, D., Ghamisi, P., Koeva, M., and Camps-Valls, G. (2022). Deep learning and earth observation to support the sustainable development goals. IEEE Geoscience and Remote Sensing Magazine, 2-30, https://doi.org/10.48550/arXiv.2112.11367

Posselt, D.J., Bishop, C.H. (2018). Nonlinear Data Assimilation for Clouds and Precipitation using a Gamma-Inverse Gamma Ensemble Filter. Quarterly Journal of the Royal Meteorological Society,144(716), 2331-2349, https://doi.org/10.1002/qj.3374

Quinn, C., O’Kane, T.J., Kitsios, V. (2020). Application of a local attractor dimension to reduced space strongly coupled data assimilation for chaotic multiscale systems. Nonlinear Processes in Geophysics, 27 (1), 51-74, https://doi.org/10.5194/npg-27-51-2020

Robinson A. R., and K. Brink (Eds.). 2006. The Sea. Vols. 10 to 14. Harvard University Press.

Roemmich, D., Alford, M.J., Hervé, C., Johnson, K., King, B., Moum, J., Oke, P., Owens, W.B., Pouliquen, S., Purkey, S., Scanderbeg, M., Suga, T., Wijffels, S., Zilberman, N., Bakker, D., Baringer, M., Belbeoch, M., Bittig, H.C., Boss, E., Calil, P., Carse, F., Carval, T., Chai, F., Conchubhair, D.Ó., d’Ortenzio, F., Dall’Olmo, G., Desbruyeres, D., Fennel, K., Fer, I., Ferrari, R., Forget, G., Freeland, H., Fujiki, T., Gehlen, M., Greenan, B., Hallberg, R., Hibiya, T., Hosoda, S., Jayne, S., Jochum, M., Johnson, G.C., Kang, K., Kolodziejczyk, N., Körtzinger, A., Le Traon, P.-Y., Lenn, Y.-D., Maze, G., Mork, K.A., Morris, T., Nagai T., Nash, J., Garabato, A.N., Olsen, A., Pattabhi, R.R., Prakash, S., Riser, S., Schmechtig, C., Schmid, C., Shroyer, E., Sterl, A., Sutton, P., Talley, L., Tanhua, T., Thierry, V., Thomalla, S., Toole, J., Troisi, A., Trull, T.W., Turton, J., Velez-Belchi, P. J., Walczowski, W., Wang, H., Wanninkhof, R., Waterhouse, A.F., Waterman, S., Watson, A., Wilson, C., Wong, A.P.S., Xu, J., Yasuda, I.(2019). On the Future of Argo: A Global, Full-Depth, Multi-Disciplinary Array. Frontiers in Marine Science, 6, https://doi.org/10.3389/fmars.2019.00439

Sakov, P. (2014). EnKF-C User Guide, https://doi.org/10.48550/arXiv.1410.1233

Sakov, P.,Haussaire, J.-M., Bocquet, M. (2017). An iterative ensemble Kalman filterin presence of additivemodel error. Quarterly Journal of the Royal Meteorological Society,144(713), https://doi.org/10.48550/arXiv.1711.06110

Sandery, P., Brassington, G., Colberg, F., Sakov, P., Herzfeld, M., Maes, C., Tuteja, N. (2019). An ocean reanalysis of the western Coral Sea and Great Barrier Reef. Ocean Modelling, 144, 101495, http://dx.doi.org/10.1016/j.ocemod.2019.101495

Sandery, P., O’Kane, T., Kitsios, V., and Sakov, P. (2020). Climate model state estimation using variants of EnKF coupled data assimilation. Monthly Weather Review,148(6), 2411-2431, https://doi.org/10.1175/MWR-D-18-0443.1

She, J, Muñiz Piniella, Á, Benedetti-Cecchi, L, Boehme, L, Boero, F, Christensen, A, et al. (2019). An integrated approach to coastal and biological observations. Frontiers in Marine Science, 6, 314, https://doi.org/10.3389/fmars.2019.00314

She, J., Allen, I., Buch, E., Crise, A., Johannessen, J.A., Le Traon P.-Y. et al. (2016). Developing European operational oceanography for Blue Growth, climate change adaptation and mitigation, and ecosystem-based management. Ocean Science, 12, 953-976, https://doi.org/10.5194/os-12-953-2016

She, J., Bethers, U., Cardin, V., Christensen, K.H., Dabrowski, T., et al. (2021). Develop EuroGOOS marine climate service with a seamless earth system approach. 9th EuroGOOS International conference, Shom; Ifremer; EuroGOOS AISBL, May 2021, Brest (Virtual), France, 554-561.

Shriver, J. F., Arbic, B. K., Richman, J. G., Ray, R. D., Metzger, E. J., Wallcraft, A. J., Timko, P. G. (2012), An evaluation of the barotropic and internal tides in a high-resolution global ocean circulation model. Journal of Geophysical Research: Oceans, 117(C10), https://doi.org/10.1029/2012JC008170

Sotillo, M.G., Garcia-Hermosa, I., Drévillon, M., Régnier, C., Szczypta, C., Hernandez, F., Melet, A., Le Traon, P-Y. (2021). Communicating CMEMS Product Quality: evolution & achievements along Copernicus-1 (2015-2021). Included in “Special Issue: The Copernicus Marine Service from 2015 to 2021: six years of achievements”, by LeTraon et al., Mercator Océan Journal #57, https://doi.org/10.48670/moi-cafr-n813

Sun, Y., Bao, W., Valk, K., Brauer, C. C., Sumihar, J., and Weerts, A. H. (2020). Improving forecast skill of lowland hydrological models using ensemble Kalman filter and unscented Kalman filter. Water Resources Research, 56, e2020WR027468, https://doi.org/10.1029/2020WR027468

van de Meent, J.-W., Paige, B., Yang, H., AND Wood, F. (2021). An introduction to probabilistic programming, https://doi.org/10.48550/arXiv.1809.10756

van Leeuwen, S., Tett, P., Mills, D., van der Molen, J. (2015). Stratified and non stratified areas in the North Sea: Long-term variability and biological and policy implications. Journal of Geophysical Research: Oceans, 120(7), 4670-4686, https://doi.org/10.1002/2014JC010485

Vinuesa, R., and Brunton, S. L. (2021). The potential of machine learning to enhance computational fluid dynamics, https://doi.org/10.48550/arXiv.2110.02085

Weyn, J.A., Durran, D.R., Caruana, R., Cresswell-Clay, N. (2021). Sub-Seasonal Forecasting With a Large Ensemble of Deep-Learning Weather Prediction Models. Journal of Advances in Modeling Earth Systems, 13(7), e2021MS002502, https://doi.org/10.1029/2021MS002502

WMO (2015). Seamless prediction of the Earth system: from minutes to months. WMO-No. 1156, ISBN 978- 92-63-11156-2.

Xu, S., Huang, X., Oey, L.-Y., Xu, F., Fu, H., Zhang, Y., Yang, G. (2015). POM.gpu-v1.0: a GPU-based Princeton Ocean Model. Geoscientific Model Development, 8, 2815-2827, https://doi.org/10.5194/gmd-8-2815-2015

Zanna, L., and Bolton, T. (2021). Deep learning of unresolved turbulent ocean processes in climate models. In: “Deep Learning for the Earth Sciences”, G. Camps-Valls, D. Tuia, X. X. Zhu, and M. Reichstein (Eds.), Wiley https://doi.org/10.1002/9781119646181.ch20

Zhang, L., Delworth, T.L., Jia, L. (2017). Diagnosis of Decadal Predictability of Southern Ocean Sea Surface Temperature in the GFDL CM2.1 Model. Journal of Climate, 30(16), 6309-6328, https://doi.org/10.1175/JCLI-D-16-0537.1

Chapter 12

Challenges and future perspectives in ocean prediction

To start contributing, sharing knowledge and editing the WIKI, please login