Chapter 10

Coupled Prediction: Integrating Atmosphere-Wave-Ocean forecasting


CHAPTER
COORDINATORS

John Siddorn
CHAPTER
AUTHORS

Natacha B. Bernier, Øyvind Breivik, Kai H. Christensen, Stephen G. Penny, and Keguang Wang

10.3 Benefits expected from coupling

The importance of coupled ocean-atmosphere prediction systems in providing seasonal predictability is well-known (Kim et al., 2012, and references therein). Sources of predictability in seasonal forecasting systems tend to be, by their very nature, coupled systems driven by teleconnections that are functions of climate modes, such as the North Atlantic Oscillation and the El Niño–Southern Oscillation that have geographically far-reaching consequences. However, as timescales shorten and the dominance of these coupled climate modes become less fundamental to predictability of the atmosphere-ocean system, it becomes less obvious whether the benefits of fully coupled systems justify the computational cost or the technical and scientific complexity required. The coupling between atmospheric and wind wave models was first introduced operationally in 1998 at ECMWF. The method based on the theoretical work of Janssen (1991) contributed to an improvement of both atmospheric and surface wave forecasts at the medium range on the global scale. The usual approach of forcing the ocean with atmospheric conditions (Takano et al., 1973), and referred to in this section as “forced”) using bulk parameterisations of Polar lows are of a decidedly less extreme nature than tropical cyclones, but they share the same dependence on sea surface temperature (Rasmussen and Turner, 2003). As winds blow off the sea ice, the air is rapidly warmed by the (relatively) warm ocean surface. Under the appropriate atmospheric conditions (Kolstad, 2015), this can lead to the formation of polar lows. These are small-scale, intense cyclones, typically with gale-force winds. If the cyclone is rather stationary, a shallow layer of warmer water can mix with cooler waters through Ekman pumping. As the ocean temperature is key to sustaining a cyclone, the water mixing can sometimes be enough to inhibit further growth of the polar low. Examples of instantaneous coupling between land, ocean, and atmosphere also include coastal inundation during landfall of tropical cyclones (Lee et al., 2019). In these cases, heavy precipitation leads to a swelling of local rivers, which is often coincidental with a large storm surge. The result is a rapid sea-level rise that may cause extensive damage to coastal infrastructure, especially when combined with large surface waves and strong winds. the fluxes (Large and Yeager, 2009) is computationally and structurally far easier and cheaper than coupling approaches. However, the key boundary layer processes (see Section 9.1 for details) are not taken into account and thus the feedback between the atmospheric boundary layer and the upper ocean is not represented. It is necessary to understand how important these processes might be, bearing in mind that coupled models can suffer from systematic errors as a result of positive feedback leading to drifts in the forecast (Hyder et al., 2018).

Ocean forecasting systems have become increasingly high-resolution, resolving coastlines, bathymetry, and eddy-scale processes. The effect of coupling on model predictions becomes more important with increasing grid resolution (Janssen et al., 2004), and so the question of the benefits of coupling to ocean forecasting is perhaps more relevant now than ever. A small but growing body of literature demonstrates the benefits to ocean prediction of coupling at shorter time-ranges (Brassington et al, 2015; Allard et al., 2010; Lewis et al., 2018 and 2019).

Understanding the advantages of coupled over uncoupled predictions in short-range ocean forecasting is in its infancy. Although the future of advanced systems is clearly coupling, as several processes are better represented, predictive modelling without coupling is however possible thanks to parameterizations and should never be discarded as an option. At a recent science meeting of OceanPredict (Vinayachandran et al., 2020), the need for a careful evaluation of how ocean and atmosphere components interact and impact each other was highlighted. At monthly or shorter timescales, the benefits of running coupled systems need to be evaluated, balancing scientific and service benefits against complexity and computing costs. Intermediate complexity coupling may also be an appropriate approach if full coupling is not viable and the service is not reliant on the atmosphere and ocean information. Lemarié et al. (2021) provided an example of an atmospheric boundary layer approach that gives some of the benefits of coupling whilst being significantly simpler and computationally cheaper.

The potential benefits of using a coupled framework is reinforced by the move towards a multi-hazard approach to predictions. Natural hazards from multiple sources may combine or occur concurrently (Lewis et al., 2015). Large waves, storm surges, high-wind speeds, and extreme precipitation are all hazards that are likely to co-occur, and influence each other through coupled feedbacks that can compound one another (for example through over-topping). Coupled systems that predict these coupled feedbacks may enable an improvement in the range and consistency of actionable information to be provided through hazard warnings and guidance.

When considering providing services in multi-hazards frameworks, the opportunities that coupling provides should be considered alongside the scientific benefits. A coupled system combining the full water-cycle – including consistent precipitation, river runoff, wave, currents, and surge forecasts - can give users mutually consistent products in a joint probability framework. This can be important in coastal flooding, where the impacts for coastal communities or industries can come from high river flows and local heavy precipitation events, alongside overtopping waves and extreme surges. From a service perspective, it is attractive to provide probabilistic frameworks in which the timings and intensities of events are consistently incorporated and interact appropriately; these services increasingly rely on probabilistic information for decision making. An area that has had limited attention but seems likely to prove significant is the impact of feedback among Earth-system components upon ensemble spread, and hence the quality of the probabilistic information.

Ocean phenomena are usefully classified depending on their nature, which determines the timescale for oceanic predictive skill and whether a coupled ocean-atmosphere model would be advantageous. Some phenomena have strong dependence, and a rapid response, to the atmosphere forcing and can be thought of as forced-dissipative systems. This category includes, surface waves, responses to surface heating and wind in the ocean boundary layer, and storm surges. These systems largely depend upon skill in the atmosphere model, and so the benefits of coupling to the atmosphere can be a leading-order driver of the ocean system skill. The advantage of coupling and its impact upon predictability often focus on the benefits to the atmosphere (Brunet et al., 2010; Belcher et al., 2015). The impact of ocean coupling on tropical meteorology is well documented with tropical cyclones (Bender and Ginis 2000; Mogensen et al., 2017; Smith et al., 2018; Neetu et al., 2019), monsoons (Fu, 2007), and the Madden–Julian Oscillation (Bernie et al., 2008; Shelly et al., 2014; Seo et al., 2014), which predictability improved in coupled systems. There is also an increasing body of evidence that the oceans have a significant local (important for short-range forecasts) and non-local (increasingly significant at longer lead-times) influence on the extra tropics (Minobe et al., 2008).

In the literature, there is limited quantification of the impact of the coupled improvement in atmospheric parameters on ocean services but it is an increasing area of study. Guiavarc’h et al. (2019) explored the impact of a coupled (atmosphere-ocean) system on short-range ocean forecast skill and showed that there are benefits in SST predictability at the short-range, but with mixed results for other parameters. Given that the research system they used is at a relatively early stage in development, and the resolution of the atmosphere is significantly lower than in comparable forced systems, these results are encouraging.

Although the importance of coupling the wave-ocean interface for improving forecasts of surge and waves is well documented (Wolf, 2008; Lewis et al., 2018), most storm surge and wave prediction systems remain largely independent. As well as the atmospheric forcing, ocean currents have a significant role in modifying ocean wave properties. The presence of eddies, fronts, and filaments with length scales of tens to hundreds km and ubiquitous in the world’s oceans, can be the main source of variability in significant wave heights at these scales. Ardhuin et al. (2017) made a compelling case for the importance of coupling the ocean surface currents to a wave model allowing adequate representation of wave height variability in the world’s open oceans. Wave predictions in shelf seas environments are shown to be improved as a result of coupling to an ocean model (Allard et al., 2012; Wahle et al., 2017; Lewis et al., 2018). as well as the predictions of ocean current and other ocean parameters, including upwelling due to stokes drift effects, were enhanced (Wu et al, 2019). Fan et al. (2009) showed that time and spatial variations in the surface wave field, as a result of coupling to winds, are particularly strong in hurricanes, with significant additional feedback from ocean currents and near-surface temperatures.

The ocean eddy kinetic energy is damped when taking into account the feedbacks between ocean surface current and winds (Oerder et al., 2018; Jullien et al., 2020). As ocean models increasingly resolve the mesoscale explicitly, they are likely to have the tendency to over-predict the eddy activity. In uncoupled systems, there is an option to calculate the wind stress using relative wind speeds (taking into account the eddies and other ocean current interactions). However, in these systems there is no imprint of ocean eddies on the atmospheric wind stress curl (due to the lack of ocean eddies in the uncoupled atmospheric modelling system), and so the feedback onto the wind stress results in over-damping of the eddies. A fully coupled system will correctly allocate the feedback between the winds and currents, allowing the eddy and wind fields to co-evolve correctly. This coupling between the winds and currents can also lead to upscaling to the large scale, e.g. Renault et al. (2016) showed that current/wind feedback, through its eddy killing effect, resolves long-lasting biases in Gulf Stream path.

Marine heatwaves have recently been recognised for their importance (Holbrook et al., 2019). They are high impact events that can be induced by anomalous heating at the ocean surface; their predictability is dependent upon air-sea coupled phenomena (Jacox, 2019). At the other end of the temperature scale, Pellerin et al. (2004) showed that coupling can also have strong impacts in ice-infested seas even down to sub-daily time scales, due to rapid changes in coastal sea ice cover (i.e. the formation of coastal polynyas). The sea ice acts as a barrier between a relatively warm–wet ocean and cold–dry atmosphere, and changes in the sea ice cover can have dramatic effects on heat and moisture fluxes. The importance of coupling has also been recognized in polar regions (Jung and Vitart, 2006).

Coastal regions are particularly impacted by coupled processes, both between the ocean and atmosphere and coupling with river and estuaries. The impact of freshwater discharges on the ocean circulation is highlighted by Røed and Albretsen (2007) and, more broadly on the coastal marine environment, by Dzwonkowski et al., 2017. The inputs from the land surface, mediated through estuaries and lagoons, are generally poorly represented in ocean forecasting systems due to their scale (time and space) and their complexity. It is extremely difficult to accurately model nutrient inputs, which are mediated strongly by land use and societal factors, and the associated plankton response is therefore compounded. Although this problem is not fundamentally a coupling problem, there is still scope for improving the inputs to the coastal environment through specifying better the river-estuary-ocean interface.

References

Ali, A., Christensen, K., Breivik, O., Malila, M., Raj, R., Bertino, L., Chassignet, E., Bakhoday-Paskyabi M. (2019). A comparison of Langmuir turbulence parameterizations and key wave effects in a numerical model of the North Atlantic and Arctic Oceans. Ocean Modelling,137, pp 76-97, https://doi.org/10.1016/j.ocemod.2019.02.005

Allard, R. A., Campbell, T. J. , Smith, T. A., Jensen, T. G., Chen, S., Cummings, J. A., Chen, S., Doyle, J., Xiaodong, H., Small, R.J., Carrol, S.N. (2010). Validation Test Report for the Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS) Version 5.0 NRL/MR/7322–10-9283. Stennis Space Center, MS: Oceanography Division, Naval Research Laboratory, 172 pp.

Allard, R. A., Travis, A. S., Jensen, T. G., Chu, P. Y., Rogers, E., and Campell, T. J. (2012). Validation Test Report for the Coupled Ocean / Atmosphere Mesoscale Prediction System (COAMPS) Version 5.0: Ocean / Wave Component Validation. Naval Research Lab Tech Report, (NRL/MR/7320--12-9423).

Ardhuin, F., Rascle, N., Belibassakis, K. (2008). Explicit wave-averaged primitive equations using a generalized Lagrangian mean. Ocean Modelling, 20(1), 35-60, https://doi.org/10.1016/j.ocemod.2007.07.001

Ardhuin, F., Marie, L., Rascle, N., Forget, P., Roland, A. (2009). Observation and estimation of Lagrangian, Stokes and Eulerian currents induced by wind and waves at the sea surface. Journal of Physical Oceanography, 39, 2820-2838, https://doi.org/10.1175/2009JPO4169.1

Ardhuin, F., and Jenkins A., (2006). On the Interaction of Surface Waves and Upper Ocean Turbulence. Journal of Physical Oceanography, 36, 551-557, https://doi.org/10.1175/JPO2862.1

Ardhuin, F., Sutherland, P., Doble, M., Wadhams, P. (2016). Ocean waves across the Arctic: Attenuation due to dissipation dominates over scattering for periods longer than 19 s. Geophysical Research Letters, 43(11), 5775-5783, https://doi.org/10.1002/2016GL068204

Ardhuin, F., Gille, S. T., Menemenlis, D., Rocha, C. B., Rascle, N., Chapron, B., Gula, J., Molemaker, J. (2017). Small-scale open ocean currents have large effects on wind wave heights. Journal of Geophysical Research: Oceans, 122(6), 4500–4517. https://doi.org/10.1002/2016JC012413

Barker, C. H., Kourafalou, V. H., Beegle-Krause, C. J., Boufadel, M., Bourassa, M. A., Buschang, S. G., Androulidakis, Y., Chassignet, E.P., Dagestad, K.-F., Danmeier, D.G., Dissanayake, A.L., Galt, J.A., Jacobs, G., Marcotte, G., Özgökmen, T., Pinardi, N., Schiller, R.V., Socolofsky, S.A., Thrift-Viveros, D., D., Zhang, A., Zheng, Y. (2020). Progress in operational modeling in support of oil spill response. Journal of Marine Science and Engineering, 8(9), 1-55, https://doi.org/10.3390/jmse8090668

Belcher, S.E., Hewitt, H.T., Beljaars, A., Brun, E., Fox-Kemper, B., Lemieux, J.F., Smith, G., and Valcke, S. (2015). Ocean-Waves-Sea Ice- Atmosphere Interactions. In: Brunet, G., Jones, S. and Ruti, P. (eds.) “Seamless prediction of the Earth system: from minutes to months”, WMO, 1156. World Meteorological Organisation, Geneva, pp. 155-170.

Bender, M. A., and Ginis, I. (2000). Real-Case Simulations of Hurricane–Ocean Interaction Using A High-Resolution Coupled Model: Effects on Hurricane Intensity. Monthly Weather Review, 128(4), 917-946, https://doi.org/10.1175/1520-0493(2000)128<0917:RCSOHO>2.0.CO;2

Bernie, D. J., Guilyardi, E., Madec, G., Slingo, J. M., Woolnough, S. J., and Cole, J. (2008). Impact of resolving the diurnal cycle in an ocean-atmosphere GCM. Part 2: A diurnally coupled CGCM. Climate Dynamics, 31(7-8), 909-925, https://doi.org/10.1007/s00382-008-0429-z

Brassington, G. B., Martin, M. J., Tolman, H. L., Akella, S., Balmeseda, M., Chambers, C. R. S., Chassignet, T.,  Cummings, J.A., Drillet, Y., Jansen, P.A.E.M., Laloyaux, P., Lea, D., Mehra, A., Mirouze, I., Ritchie, H., Samson, G., Sandery, P.A., Smith, G.C., Suarez, M., and Todling, R. (2015). Progress and challenges in short- to medium-range coupled prediction. Journal of Operational Oceanography, 8, s239-s258, https://doi.org/10.1080/1755876x.2015.1049875

Breivik, Ø., Mogensen, K., Bidlot, J.-R., Balmaseda, M.A., Janssen, P.A. (2015). Surface Wave Effects in the NEMO Ocean Model: Forced and Coupled Experiments. Journal of Geophysical Research: Oceans, 120, 2973-2992, https://doi.org/10.1002/2014JC010565

Brunet, G., Keenan, T., Onvlee, J., Béland, M., Parsons, D., and Mailhot, J. (2010). The next generation of regional prediction systems forweather,water and environmental applications. CAS XV Vision paper(Agenda item 8.2).

Coon, M. D., Maykut, G. A., Pritchard, R. S., Rothrock, D. A., and Thorndike A. S. (1974). Modeling the pack ice as an elastic-plastic material. AIDJEX Bull. 24, pp. 1-106, Univ. of Wash., Seattle, Washington.

Davidson, F.J.M., Allen, A., Brassington, G.B., Breivik, Ø., Daniel, P., Kamachi, M., Sato, S., King, B., Lefevre, F., Sutton, M., and Kaneko, H. (2009). Applications of GODAE ocean current forecasts to search and rescue and ship routing. Oceanography, 22(3), 176-181, https://doi.org/10.5670/oceanog.2009.76

Divine, D., Korsnes, R., and Makshtas, A. P. (2003). Variability and climate sensitivity of fast ice extent in the north-eastern Kara Sea. Polar Research, 22, 27-34, https://doi.org/10.3402/polar.v22i1.6440

Doble, M. J., and Bidlot, J.-R. (2013). Wave buoy measurements at the Antarctic sea ice edge compared with an enhanced ECMWF WAM: Progress towards global waves-in-ice modelling. Ocean Modelling, 70, 166-173, https://doi.org/10.1016/j.ocemod.2013.05.012

Dzwonkowski, B., Greer, A.T., Briseno-Avena, C., Krause, J.W., Soto, I.M., Hernandez, F.J., Deary, A.L., Wiggert, J.D., Joung, D., Fitzpatrick, P.J., O’Brien, S.J., Dykstra, S.L., Lau, Y., Cambazoglu, M.K., Lockridge, G., Howden, S.D.,

Shiller, A.M., Graham, W.M. (2017). Estuarine influence on biogeochemical properties of the Alabama shelf during the fall season. Continental Shelf Research, 140, 96-109, https://doi.org/10.1016/j.csr.2017.05.001

Emanuel,K.A.(1986).AnAir-SeaInteractionTheory for TropicalCyclones.PartI:Steady-StateMaintenance.Journal of the Atmospheric Sciences, 43(6), 585-605, https://doi.org/10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2

Fan, Y., Ginis, I., and Hara, T. (2009). The effect of wind-wave-current interaction on air-sea momentum fluxes and ocean response in tropical cyclones. Journal of Physical Oceanography, 39(4), 1019-1034, https://doi.org/10.1175/2008JPO4066.1

Fan, Y., and Griffies, S.M. (2014). Impacts of parameterized Langmuirturbulence and non-breakingwave mixing in global climate simulations. Journal of Climate, 27, 4752-4775, https://doi.org/10.1175/JCLI-D-13-00583.1

Fu, L.L. (2007). Intraseasonal variability ofthe equatorial Indian ocean observed from sea surface height,wind, and temperature data. Journal of Physical Oceanography, 37(2),188-202, https://doi.org/10.1175/JPO3006.1

Girard, L., Bouillon, S., Weiss, J., Amitrano, D., Fichefet, T., and Legat, V. (2011). A new modeling framework for sea-ice mechanics based on elasto-brittle rheology. Annals of Glaciology, 52(57), 123-132, https://doi.org/10.3189/172756411795931499

Guiavarc’h, C., Roberts-Jones, J., Harris, C., Lea, D. J., Ryan, A., and Ascione, I. (2019). Assessment of ocean analysis and forecast from an atmosphere–ocean coupled data assimilation operational system. Ocean Science, 15(5), 1307-1326, https://doi.org/10.5194/os-15-1307-2019

Harlim, J., Oczkowski, M., Yorke, J. A., Kalnay, E., and Hunt, B.R. (2005). Convex Error Growth Patterns in a Global Weather Model. Physical Review Letters, 94, 228501, https://doi.org/10.1103/PhysRevLett.94.228501

Hibler, W. D. III (1979). A dynamic thermodynamic sea ice model. Journal of Physical Oceanography, 9, 815-846, https://doi.org/10.1175/1520-0485(1979)009<0815:ADTSIM>2.0.CO;2

Holbrook, N. J., Scannell, H. A., Sen Gupta, A., Benthuysen, J. A., Feng, M., Oliver, E. C. J., Alexander, L.V., Burrows, M.T., Donat, M.G., Hobday, A.J., Moore, P.J., Perkins-Kirkpatrick, S.E., Smale, D.A., Straub, S.C., Wernberg, T. (2019). A global assessment of marine heatwaves and their drivers. Nature Communications, 10(1), 1-13, https://doi.org/10.1038/s41467-019-10206-z

Hunke, E. C., and Dukowicz, J. K. (1997). An elastic-viscous-plastic model for sea ice dynamics. Journal of Physical Oceanography, 27(9), 1849-1867, https://doi.org/10.1175/1520-0485(1997)027<1849:AEVPMF>2.0.CO;2

Hutchings, J. K., Heil, P., and Hibler, W. D. III (2005). Modeling linear kinematic features in sea ice. Monthly Weather Review, 133, 3481-3497, https://doi.org/10.1175/MWR3045.1

Hyder, P., Edwards, J.M., Allan, R., Hewitt, H.T., Bracegirdle, T.J., Gregory, J.M., Wood, R.A., Meijers, A.J.S., Mulcahy, J., Field, P., Furtado, K., Bodas-Salcedo, A., Williams, K.D., Copsey, D., Josey, S.A., Liu, C., Roberts, C.D., Sanchez, C., Ridley, J., Thorpe, L., Hardiman, S.C., Mayer, M., Berry, D.I., Belcher, S.E. (2018). Critical Southern Ocean climate model biases traced to atmospheric model cloud errors. Nature Communications, 9, 3625, https://doi.org/10.1038/s41467-018-05634-2

Jacox, M. G. (2019). Marine heatwaves in a changing climate. Nature, 571, 485-487. https://doi.org/10.1038/d41586-019-02196-1

Janssen, P.A.E.M. (1991). Quasi-linear theory of wind wave generation applied to wave forecasting. Journal of Physical Oceanography, 21, 1631-1642.

Janssen, P. (2004). The interaction of ocean waves and wind. Cambridge University Press, Cambridge, UK.

Janssen, P., Saetra, O., Wettre, C., Hersbach, H., Bidlot, J. (2004). Impact of the sea state on the atmosphere and ocean. Annales Hydrographiques 6e série, 772, 3-23.

Jullien, S., Masson, S., Oerder, V., Samson, G., Colas, F., and Renault, L. (2020). Impact of ocean-atmosphere current feedback on ocean mesoscale activity: Regional variations and sensitivity to model resolution. Journal of Climate, 33(7), 2585-2602, https://doi.org/10.1175/JCLI-D-19-0484.1

Jung, T., and Vitart, F. (2006). Short-Range and Medium-Range Weather Forecasting in the Extratropics during Wintertime with and without an Interactive Ocean. Monthly Weather Review, 134(7), 1972-1986, https://doi.org/10.1175/MWR3206.1

Kim, H. M., Webster, P. J., and Curry, J. A. (2012). Seasonal prediction skill of ECMWF System 4 and NCEP CFSv2 retrospective forecast for the Northern Hemisphere Winter. Climate Dynamics, 39(12), 2957-2973, https://doi.org/10.1007/s00382-012-1364-6

Kohout, A., Williams, M.J.M., Dean, S.M., Meylan, M.H. (2014). Storm-induced sea-ice breakup and the implications for ice extent. Nature, 509(7502), 604-607, https://doi.org/10.1038/nature13262

Kolstad, E. (2015). Extreme small-scale wind episodes over the Barents Sea: When, where and why? Climate Dynamics, 1-14, https://doi.org/10.1007/s00382-014-2462-4

Kumar, N., Voulgaris, G., Warner, J.C., Olabarrieta, M. (2012). Implementation of the vortex force formalism in the coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system for inner shelf and surf zone applications. Ocean Modelling, 47, 65-95, https://doi.org/10.1016/j.ocemod.2012.01.003

Laloyaux, P., de Boisseson, E., Balmaseda, M., Bidlot, J. R., Broennimann, S., Buizza, R., Dalhgren, P., Dee, D., Haimberger, L., Hersbach, H., Kosaka, Y., Martin, M., Poli, P., Rayner, N., Rustemeier, E., Schepers, D. (2018). CERA-20C: A Coupled Reanalysis of the Twentieth Century. Journal of Advances in Modeling Earth Systems, 10(5), 1172-1195. https://doi.org/10.1029/2018MS001273

Large, W. G., and Yeager, S. G. (2009). The global climatology of an interannually varying air - Sea flux data set. Climate Dynamics, 33(2-3), 341-364, https://doi.org/10.1007/s00382-008-0441-3

Lee, C.,Hwang, S., Do, K., and Son, S. (2019). Increasing flood risk due to riverrunoffin the estuarine area during a storm landfall. Estuarine, Coastal and Shelf Science, 221, 104-118, https://doi.org/10.1016/j.ecss.2019.03.021

Lemarié, F., Samson, G., Redelsperger, J.-L., Giordani, H., Brivoal, T., and Madec, G. (2021). A simplified atmospheric boundary layer model for an improved representation of air-sea interactions in eddying oceanic models: implementation and first evaluation in NEMO(4.0). Geoscientific Model Development,14, 543-572, https://doi.org/10.5194/gmd-14-543-2021

Lemieux, J.-F., Dupont, F., Blain, P., Roy, F., Smith, G. C., and Flato, G. M. (2016). Improving the simulation of landfast ice by combining tensile strength and a parameterization for grounded ridges. Journal of Geophysical Research: Oceans, 121, 7354-7368, https://doi.org/10.1002/2016JC012006

Lewis, H., Mittermaier, M., Mylne, K., Norman, K., Scaife, A., Neal, R., … Pilling, C. (2015). From months to minutes - exploring the value of high-resolution rainfall observation and prediction during the UK winter storms of 2013/2014. Meteorological Applications, 22(1), 90-104, https://doi.org/10.1002/met.1493

Lewis, H. W., Castillo Sanchez, J. M., Siddorn, J., King, R. R., Tonani, M., Saulter, A., Sykes, P., Pequignet, A.C., Weedon, G.P., Palmer, T., Staneva, J., Bricheno, L. (2018). Can wave coupling improve operationalregional ocean forecasts for the North-West European Shelf? Ocean Science,15, 669-690, https://doi.org/10.5194/os-15-669-2019

Lewis, H. W., Castillo Sanchez, J. M., Arnold, A., Fallmann, J., Saulter, A., Graham, J., Bush, M., Siddorn, J., Tamzin, P., Adrian, L., Edwards, J., Bricheno, L.,Martinez-de la Torre, A., Clark, J.(2019). TheUKC3 regional coupled environmental prediction system. Geoscientific Model Development,12(6), 2357-2400, https://doi.org/10.5194/gmd-12-2357-2019

Li, Q., Webb, A., Fox-Kemper, B., Craig, A., Danabasoglu, G., Large, W.G., Vertenstein, M. (2016). Langmuir mixing effects on global climate: WAVEWATCH III in CESM. Ocean Modeling, 103, 145-160, https://doi.org/10.1016/j.ocemod.2015.07.020

Li, Q., and Fox-Kemper, B. (2017). Assessing the Effects of Langmuir Turbulence on the Entrainment Buoyancy Flux in the Ocean Surface Boundary Layer. Journal of Physical Oceanography, 47(12), 2863-2886, https://doi.org/10.1175/JPO-D-17-0085.1

Li, Q., Fox-Kemper, B., Breivik, O., Webb, A. (2017). Statistical Models of Global Langmuir Mixing. Ocean Modelling, 113, 95-114, https://doi.org/10.1016/j.ocemod.2017.03.016

Lorenz, E.N. (1963). Deterministic nonperiodic flow. Journal of the Atmospheric Sciences, 20, 130-141

Lorenz, E.N. (1967). The nature and theory of the general circulation of the atmosphere. World Meteorological Organization, 218. Available at; https://library.wmo.int/doc_num.php?explnum_id=10889

Mahoney, A. R., Eicken, H., Gaylord, A.G., and Gens, R. (2014). Landfast sea ice extent in the Chukchi and Beaufort Seas: The annual cycle and decadal variability. Cold Regions Science and Technology, 103, 41-56, https://doi.org/10.1016/j.coldregions.2014.03.003

Maykut, G. A. (1978). Energy exchange over young sea ice in the central Arctic. Journal of Geophysical Research: Oceans, 83(C7), 3646-3658, https://doi.org/10.1029/JC083iC07p03646

McWilliams, J.C., Sullivan, P.P., and Moeng, C.-H. (1997). Langmuir turbulence in the ocean. Journal of Fluid Mechanics, 334, 1-30, https://doi.org/10.1017/S0022112096004375

Minobe, S., Kuwano-Yoshida, A., Komori, N., Xie, S. P., and Small, R. J. (2008). Influence of the Gulf Stream on the troposphere. Nature, 452(7184), 206-209, https://doi.org/10.1038/nature06690

Mogensen, K. S., Magnusson, L., Bidlot, J-R. (2017). Tropical cyclone sensitivity to ocean coupling in the ECMWF coupled model. Journal of Geophysical Research: Oceans,122(5),43924412, https://doi.org/10.1002/2017JC012753

Moin, P. and Mahesh, K. (1998). Direct numerical simulation: A Tool in Turbulence Research. Annual Review of Fluid Mechanics, 30(1), 539-578, https://doi.org/10.1146/annurev.fluid.30.1.539

Naughten, K. A., Meissner, K. J., Galton-Fenzi, B. K., England, M. H., Timmermann, R., Hellmer, H. H., Hattermann, T., and Debernard, J. B. (2018). Intercomparison of Antarctic ice-shelf, ocean, and sea-ice interactions simulated by MetROMS-iceshelf and FESOM 1.4. Geoscientific Model Development, 11(4), 1257-1292, https://doi.org/10.5194/GMD-11-1257-2018

Neetu, S., Lengaigne, M., Vialard, J., Samson, G., Masson, S., Krishnamohan, K. S., and Suresh, I. (2019). Premonsoon/Postmonsoon Bay of Bengal Tropical Cyclones Intensity: Role of Air Sea Coupling and LargeScale Background State. Geophysical Research Letters, 2019, 46(4), 2149-2157.

Oerder, V., Colas, F., Echevin, V., Masson, S., and Lemarié, F. (2018). Impacts of the Mesoscale Ocean-Atmosphere Coupling on the Peru-Chile Ocean Dynamics: The Current-Induced Wind Stress Modulation. Journal of Geophysical Research: Oceans, 123(2), 812-833, https://doi.org/10.1002/2017JC013294

Osadchiev, A. A., Pisareva,M.N., Spivak, E. A., Shchuka, S. A., andSemiletov, I. P.(2020). Freshwatertransport between the Kara, Laptev, and East-Siberian seas. Scientific Reports,10(1),1-14, https://doi.org/10.1038/s41598-020-70096-w

Pellerin, P., Ritchie, H., Saucier, F. J., Roy, F., Desjardins, S., Valin, M., and Lee, V. (2004). Impact of a twoway coupling between an atmospheric and an ocean-ice model over the Gulf of St. Lawrence. Monthly Weather Review, 132, 1379-1398, https://doi.org/10.1175/1520-0493(2004)132<1379:IOATCB>2.0.CO;2

Penland, C., andMatrosova, L.(1998).PredictionoftropicalAtlantic sea surface temperaturesusing LinearInverse Modeling. Journal of Climate,11, 483-496, https://doi.org/10.1175/1520-0442(1998)011<0483:POTASS>2.0.CO;2

Penland, C., and Sardeshmukh, P. D. (1995). The optimal growth of tropical sea surface temperature anomalies. Journal of Climate, 8, 1999-2024.

Rabault, J., Sutherland, G., Gundersen, O., Jensen, A., Marchenko, A., Breivik, O. (2020). An Open Source, Versatile, Affordable Waves in Ice Instrument for Scientific Measurements in the Polar Regions. Cold Regions Science and Technology, 170, 11, https://doi.org/10.1016/j.coldregions.2019.102955

Rascle, N., Ardhuin, F., Terray, E. (2006). Drift and mixing under the ocean surface: A coherent one-dimensional description with application to unstratified conditions. Journal of Geophysical Research, 111(C3), 16, https://doi.org/10.1029/2005JC003004

Rasmussen, E.A., Turner (2003). Polar lows: mesoscale weather systems in the polar regions, Cambridge University Press.

Renault, L., Molemaker, M. J., Gula, J., Masson, S., and McWilliams, J. C. (2016) Control and Stabilization of the Gulf Stream by Oceanic Current Interaction with the Atmosphere. Journal of Physical Oceanography, 46, 3439-3453, https://doi.org/10.1175/JPO-D-16-0115.1

Ridley, J. K., Blockley, E.W., Keen, A.B., Rae, J.G.L.,West, A.E., and Schroeder, D. (2018). The sea icemodel component of HadGEM3-GC3.1. Geoscientific Model Development,11(2), 713-723, https://doi.org/10.5194/gmd-11-713-2018

Røed, L.P., and Albretsen, J. (2007). The impact of freshwater discharges on the ocean circulation in the Skagerrak/northern North Sea area Part I: Model validation. Ocean Dynamics, 57(4-5), 269-285, https://doi.org/10.1007/s10236-007-0122-5

Saha, S., Nadiga, S., Thiaw, C., Wang, J., Zhang, Q., Van den Dool, H.M., Pan, H.-L., Moorthi, S., Behringer, D., Stokes, D., Peña, M., Lord, S., White, G., Ebisuzaki, W., Peng, P., Xie, P. (2006). The NCEP Climate Forecast System. Journal of Climate, 19, 3483-3517, https://doi.org/10.1175/JCLI3812.1

Saha, S., Moorthi, S., Pan, H.-L., Wu, X., Wang, J., Nadiga, S., Tripp, P., Kistler, R., Woollen, J., Behringer, D., Liu, H., Stokes, D., Grumbine, R., Gayno, G., Wang, J., Hou, Y.-T., Chuang, H., Juang, H.-M.H., Sela, J., Iredell, M., Treadon, R., Kleist, D., Delst, P.V., Keyser, D., Derber, J., Ek, M., Meng, J., Wei, H., Yang, R., Lord, S., van den Dool, H., Kumar, A., Wang, W., Long, C., Chelliah, M., Xue, Y., Huang, B., Schemm, J.-K., Ebisuzaki, W., Lin, R., Xie, P., Chen, Y., Han, Y., Cucurull, L., Reynolds, R.W., Rutledge, G., Goldberg, M. (2010). The NCEP Climate Forecast System Reanalysis. Bulletin of the American Meteorological Society, 91, 1015-1057, https://doi.org/10.1175/2010BAMS3001.1

Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P., Behringer, D., Hou, Y.-T., Chuang, H., Iredell, M., Ek, M., Meng,J., Yang,R., PeñaMendez,M., van denDool,H., Zhang,Q.,Wang,W., Chen,M., andBecker, E.(2014). TheNCEP Climate Forecast System Version 2. Journal of Climate, 27, 2185-2208, https://doi.org/10.1175/JCLI-D-12-00823.1

Semedo, A., Suvselj, K., Rutgersson, A., Sterl, A. (2011). A global view on the wind sea and swell climate and variability from ERA-40. Journal of Climate, 24(5), 1461-1479, https://doi.org/10.1175/2010JCLI3718.1

Seo, H., Subramanian, A. C., Miller, A. J., and Cavanaugh, N. R. (2014). Coupled impacts of the diurnal cycle of sea surface temperature on the Madden-Julian oscillation. Journal of Climate, 27(22), 8422-8443, https://doi.org/10.1175/JCLI-D-14-00141.1

Shelly, A., Xavier, P., Copsey, D., Johns, T., Rodriguez, J.M., Milton, S., and Klingaman, N. (2014). Coupled versus uncoupled hindcast simulations of the Madden-Julian Oscillation in the Year of Tropical Convection. Geophysical Research Letters, 41, 5670-5677, https://doi.org/10.1002/2013GL059062

Sluka, T., Penny, S.G., Kalnay, E. and Miyoshi, T. (2016). Assimilating atmospheric observations into the ocean using strongly coupled ensemble data assimilation. Geophysical Research Letters, 43(2), 752-759, https://doi.org/10.1002/2015GL067238

Smith, G. C., Bélanger, J. M., Roy, F., Pellerin, P., Ritchie, H., Onu, K., Roch, M., Zadra, A., Surcel Colan, D., Winter, B., Fontecilla, J.S., Deacu, D. (2018). Impact of coupling with an ice-ocean model on global medium-range NWP forecast skill. Monthly Weather Review, 146(4), 1157-1180, https://doi.org/10.1175/MWR-D-17-0157.1

Spreen, G., Kwok, R., Menemenlis, D., and Nguyen, A. T. (2017). Sea-ice deformation in a coupled ocean-sea-ice model and in satellite remote sensing data. The Cryosphere,11,1553-1573, https://doi.org/10.5194/tc-11-1553-2017

Staneva, J., Alari, V., Breivik, O., Bidlot, J.-R., Mogensen, K. (2017). Effects of wave-induced forcing on a circulation model of the North Sea. Ocean Dynamics, 67, 81-101, https://doi.org/10.1007/s10236-016-1009-0

Sutherland, G., and Rabault, J. (2016). Observations of wave dispersion and attenuation in landfast ice. Journal of Geophysical Research: Oceans, 121(3), 1984-1997, https://doi.org/10.1002/2015JC011446

Takano, K., Mintz, Y., Han, Y.-J. (1973). Numerical simulation of the world ocean circulation. Paper presented at the 2nd Conference on Numerical Prediction. Am. Meteorol. Soc. (1973), Monterey, CA (unpublished).

Uchiyama, Y., McWilliams, J. C., Shchepetkin, A. F. (2010). Wave-current interaction in an oceanic circulation model with a vortex-force formalism: Application to the surf zone. Ocean Modelling, 34(1), 16-35, https://doi.org/10.1016/j.ocemod.2010.04.002

Vannitsem, S., and Duan, W. (2020). On the use of near-neutral Backward Lyapunov Vectors to get reliable ensemble forecasts in coupled ocean–atmosphere systems. Climate Dynamics, 55, 1125-1139, https://doi.org/10.1007/s00382-020-05313-3

Vinayachandran, P. N., Davidson, F., and Chassignet, E. P. (2020). Toward Joint Assessments, Modern Capabilities, and New Links for Ocean Prediction Systems. Bulletin of the American Meteorological Society, 101(4), E485-E487, https://doi.org/10.1175/bams-d-19-0276.1

Wahle, K., Staneva, J., Koch, W., Fenoglio-Marc, L., Ho-Hagemann, H. T. M., and Stanev, E. V. (2017). An atmosphere-wave regional coupled model: Improving predictions of wave heights and surface winds in the southern North Sea. Ocean Science, 13(2), 289-301, https://doi.org/10.5194/os-13-289-2017

Wang, K., and Wang, C. (2009). Modeling linear kinematic features in pack ice. Journal of Geophysical Research: Oceans, 114(C12), https://doi.org/10.1029/2008JC005217

Williams, T.D., Bennetts, L.G., Squire, V.A., Dumont, D., Bertino, L. (2013). Wave-ice interactions in the marginal ice zone. Part 1: Theoretical foundations. Ocean Modelling, 71, 81-91, https://doi.org/10.1016/j.ocemod.2013.05.010

Wolf, J. (2008). Coupled wave and surge modelling and implications for coastal flooding. Advances in Geosciences, 17, 19-22, https://doi.org/10.5194/adgeo-17-19-2008

Wu, L.,Rutgersson,A.,Breivik,O.(2019).Ocean-wave-atmosphereinteractionprocesses inafully coupledmodelling system. Journal of Advances in Modeling Earth Systems,11, 3852 3874, https://doi.org/10.1029/2019MS001761

Wu, L., Staneva, J., Breivik,Ø., Rutgersson, A.,Nurser, A. J. G., Clementi, E., and Madec, G. (2019).Wave effects on coastal upwelling and water level. Ocean Modelling, 101405, https://doi.org/10.1016/J.OCEMOD.2019.101405

Zhang, S.,  Harrison, M. J., Rosati, A., and  Wittenberg, A. T. (2007). System Design and Evaluation of Coupled Ensemble Data Assimilation for Global Oceanic Climate Studies. Monthly Weather Review, 135(10), https://doi.org/10.1175/MWR3466.1

To start contributing, sharing knowledge and editing the WIKI, please login