References
Ali, A., Christensen, K., Breivik, O., Malila, M., Raj, R., Bertino, L., Chassignet, E., Bakhoday-Paskyabi M. (2019). A comparison of Langmuir turbulence parameterizations and key wave effects in a numerical model of the North Atlantic and Arctic Oceans. Ocean Modelling,137, pp 76-97, https://doi.org/10.1016/j.ocemod.2019.02.005
Allard, R. A., Campbell, T. J. , Smith, T. A., Jensen, T. G., Chen, S., Cummings, J. A., Chen, S., Doyle, J., Xiaodong, H., Small, R.J., Carrol, S.N. (2010). Validation Test Report for the Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS) Version 5.0 NRL/MR/7322–10-9283. Stennis Space Center, MS: Oceanography Division, Naval Research Laboratory, 172 pp.
Allard, R. A., Travis, A. S., Jensen, T. G., Chu, P. Y., Rogers, E., and Campell, T. J. (2012). Validation Test Report for the Coupled Ocean / Atmosphere Mesoscale Prediction System (COAMPS) Version 5.0: Ocean / Wave Component Validation. Naval Research Lab Tech Report, (NRL/MR/7320--12-9423).
Ardhuin, F., Rascle, N., Belibassakis, K. (2008). Explicit wave-averaged primitive equations using a generalized Lagrangian mean. Ocean Modelling, 20(1), 35-60, https://doi.org/10.1016/j.ocemod.2007.07.001
Ardhuin, F., Marie, L., Rascle, N., Forget, P., Roland, A. (2009). Observation and estimation of Lagrangian, Stokes and Eulerian currents induced by wind and waves at the sea surface. Journal of Physical Oceanography, 39, 2820-2838, https://doi.org/10.1175/2009JPO4169.1
Ardhuin, F., and Jenkins A., (2006). On the Interaction of Surface Waves and Upper Ocean Turbulence. Journal of Physical Oceanography, 36, 551-557, https://doi.org/10.1175/JPO2862.1
Ardhuin, F., Sutherland, P., Doble, M., Wadhams, P. (2016). Ocean waves across the Arctic: Attenuation due to dissipation dominates over scattering for periods longer than 19 s. Geophysical Research Letters, 43(11), 5775-5783, https://doi.org/10.1002/2016GL068204
Ardhuin, F., Gille, S. T., Menemenlis, D., Rocha, C. B., Rascle, N., Chapron, B., Gula, J., Molemaker, J. (2017). Small-scale open ocean currents have large effects on wind wave heights. Journal of Geophysical Research: Oceans, 122(6), 4500–4517. https://doi.org/10.1002/2016JC012413
Barker, C. H., Kourafalou, V. H., Beegle-Krause, C. J., Boufadel, M., Bourassa, M. A., Buschang, S. G., Androulidakis, Y., Chassignet, E.P., Dagestad, K.-F., Danmeier, D.G., Dissanayake, A.L., Galt, J.A., Jacobs, G., Marcotte, G., Özgökmen, T., Pinardi, N., Schiller, R.V., Socolofsky, S.A., Thrift-Viveros, D., D., Zhang, A., Zheng, Y. (2020). Progress in operational modeling in support of oil spill response. Journal of Marine Science and Engineering, 8(9), 1-55, https://doi.org/10.3390/jmse8090668
Belcher, S.E., Hewitt, H.T., Beljaars, A., Brun, E., Fox-Kemper, B., Lemieux, J.F., Smith, G., and Valcke, S. (2015). Ocean-Waves-Sea Ice- Atmosphere Interactions. In: Brunet, G., Jones, S. and Ruti, P. (eds.) “Seamless prediction of the Earth system: from minutes to months”, WMO, 1156. World Meteorological Organisation, Geneva, pp. 155-170.
Bender, M. A., and Ginis, I. (2000). Real-Case Simulations of Hurricane–Ocean Interaction Using A High-Resolution Coupled Model: Effects on Hurricane Intensity. Monthly Weather Review, 128(4), 917-946, https://doi.org/10.1175/1520-0493(2000)128<0917:RCSOHO>2.0.CO;2
Bernie, D. J., Guilyardi, E., Madec, G., Slingo, J. M., Woolnough, S. J., and Cole, J. (2008). Impact of resolving the diurnal cycle in an ocean-atmosphere GCM. Part 2: A diurnally coupled CGCM. Climate Dynamics, 31(7-8), 909-925, https://doi.org/10.1007/s00382-008-0429-z
Brassington, G. B., Martin, M. J., Tolman, H. L., Akella, S., Balmeseda, M., Chambers, C. R. S., Chassignet, T., Cummings, J.A., Drillet, Y., Jansen, P.A.E.M., Laloyaux, P., Lea, D., Mehra, A., Mirouze, I., Ritchie, H., Samson, G., Sandery, P.A., Smith, G.C., Suarez, M., and Todling, R. (2015). Progress and challenges in short- to medium-range coupled prediction. Journal of Operational Oceanography, 8, s239-s258, https://doi.org/10.1080/1755876x.2015.1049875
Breivik, Ø., Mogensen, K., Bidlot, J.-R., Balmaseda, M.A., Janssen, P.A. (2015). Surface Wave Effects in the NEMO Ocean Model: Forced and Coupled Experiments. Journal of Geophysical Research: Oceans, 120, 2973-2992, https://doi.org/10.1002/2014JC010565
Brunet, G., Keenan, T., Onvlee, J., Béland, M., Parsons, D., and Mailhot, J. (2010). The next generation of regional prediction systems forweather,water and environmental applications. CAS XV Vision paper(Agenda item 8.2).
Coon, M. D., Maykut, G. A., Pritchard, R. S., Rothrock, D. A., and Thorndike A. S. (1974). Modeling the pack ice as an elastic-plastic material. AIDJEX Bull. 24, pp. 1-106, Univ. of Wash., Seattle, Washington.
Davidson, F.J.M., Allen, A., Brassington, G.B., Breivik, Ø., Daniel, P., Kamachi, M., Sato, S., King, B., Lefevre, F., Sutton, M., and Kaneko, H. (2009). Applications of GODAE ocean current forecasts to search and rescue and ship routing. Oceanography, 22(3), 176-181, https://doi.org/10.5670/oceanog.2009.76
Divine, D., Korsnes, R., and Makshtas, A. P. (2003). Variability and climate sensitivity of fast ice extent in the north-eastern Kara Sea. Polar Research, 22, 27-34, https://doi.org/10.3402/polar.v22i1.6440
Doble, M. J., and Bidlot, J.-R. (2013). Wave buoy measurements at the Antarctic sea ice edge compared with an enhanced ECMWF WAM: Progress towards global waves-in-ice modelling. Ocean Modelling, 70, 166-173, https://doi.org/10.1016/j.ocemod.2013.05.012
Dzwonkowski, B., Greer, A.T., Briseno-Avena, C., Krause, J.W., Soto, I.M., Hernandez, F.J., Deary, A.L., Wiggert, J.D., Joung, D., Fitzpatrick, P.J., O’Brien, S.J., Dykstra, S.L., Lau, Y., Cambazoglu, M.K., Lockridge, G., Howden, S.D.,
Shiller, A.M., Graham, W.M. (2017). Estuarine influence on biogeochemical properties of the Alabama shelf during the fall season. Continental Shelf Research, 140, 96-109, https://doi.org/10.1016/j.csr.2017.05.001
Emanuel,K.A.(1986).AnAir-SeaInteractionTheory for TropicalCyclones.PartI:Steady-StateMaintenance.Journal of the Atmospheric Sciences, 43(6), 585-605, https://doi.org/10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2
Fan, Y., Ginis, I., and Hara, T. (2009). The effect of wind-wave-current interaction on air-sea momentum fluxes and ocean response in tropical cyclones. Journal of Physical Oceanography, 39(4), 1019-1034, https://doi.org/10.1175/2008JPO4066.1
Fan, Y., and Griffies, S.M. (2014). Impacts of parameterized Langmuirturbulence and non-breakingwave mixing in global climate simulations. Journal of Climate, 27, 4752-4775, https://doi.org/10.1175/JCLI-D-13-00583.1
Fu, L.L. (2007). Intraseasonal variability ofthe equatorial Indian ocean observed from sea surface height,wind, and temperature data. Journal of Physical Oceanography, 37(2),188-202, https://doi.org/10.1175/JPO3006.1
Girard, L., Bouillon, S., Weiss, J., Amitrano, D., Fichefet, T., and Legat, V. (2011). A new modeling framework for sea-ice mechanics based on elasto-brittle rheology. Annals of Glaciology, 52(57), 123-132, https://doi.org/10.3189/172756411795931499
Guiavarc’h, C., Roberts-Jones, J., Harris, C., Lea, D. J., Ryan, A., and Ascione, I. (2019). Assessment of ocean analysis and forecast from an atmosphere–ocean coupled data assimilation operational system. Ocean Science, 15(5), 1307-1326, https://doi.org/10.5194/os-15-1307-2019
Harlim, J., Oczkowski, M., Yorke, J. A., Kalnay, E., and Hunt, B.R. (2005). Convex Error Growth Patterns in a Global Weather Model. Physical Review Letters, 94, 228501, https://doi.org/10.1103/PhysRevLett.94.228501
Hibler, W. D. III (1979). A dynamic thermodynamic sea ice model. Journal of Physical Oceanography, 9, 815-846, https://doi.org/10.1175/1520-0485(1979)009<0815:ADTSIM>2.0.CO;2
Holbrook, N. J., Scannell, H. A., Sen Gupta, A., Benthuysen, J. A., Feng, M., Oliver, E. C. J., Alexander, L.V., Burrows, M.T., Donat, M.G., Hobday, A.J., Moore, P.J., Perkins-Kirkpatrick, S.E., Smale, D.A., Straub, S.C., Wernberg, T. (2019). A global assessment of marine heatwaves and their drivers. Nature Communications, 10(1), 1-13, https://doi.org/10.1038/s41467-019-10206-z
Hunke, E. C., and Dukowicz, J. K. (1997). An elastic-viscous-plastic model for sea ice dynamics. Journal of Physical Oceanography, 27(9), 1849-1867, https://doi.org/10.1175/1520-0485(1997)027<1849:AEVPMF>2.0.CO;2
Hutchings, J. K., Heil, P., and Hibler, W. D. III (2005). Modeling linear kinematic features in sea ice. Monthly Weather Review, 133, 3481-3497, https://doi.org/10.1175/MWR3045.1
Hyder, P., Edwards, J.M., Allan, R., Hewitt, H.T., Bracegirdle, T.J., Gregory, J.M., Wood, R.A., Meijers, A.J.S., Mulcahy, J., Field, P., Furtado, K., Bodas-Salcedo, A., Williams, K.D., Copsey, D., Josey, S.A., Liu, C., Roberts, C.D., Sanchez, C., Ridley, J., Thorpe, L., Hardiman, S.C., Mayer, M., Berry, D.I., Belcher, S.E. (2018). Critical Southern Ocean climate model biases traced to atmospheric model cloud errors. Nature Communications, 9, 3625, https://doi.org/10.1038/s41467-018-05634-2
Jacox, M. G. (2019). Marine heatwaves in a changing climate. Nature, 571, 485-487. https://doi.org/10.1038/d41586-019-02196-1
Janssen, P.A.E.M. (1991). Quasi-linear theory of wind wave generation applied to wave forecasting. Journal of Physical Oceanography, 21, 1631-1642.
Janssen, P. (2004). The interaction of ocean waves and wind. Cambridge University Press, Cambridge, UK.
Janssen, P., Saetra, O., Wettre, C., Hersbach, H., Bidlot, J. (2004). Impact of the sea state on the atmosphere and ocean. Annales Hydrographiques 6e série, 772, 3-23.
Jullien, S., Masson, S., Oerder, V., Samson, G., Colas, F., and Renault, L. (2020). Impact of ocean-atmosphere current feedback on ocean mesoscale activity: Regional variations and sensitivity to model resolution. Journal of Climate, 33(7), 2585-2602, https://doi.org/10.1175/JCLI-D-19-0484.1
Jung, T., and Vitart, F. (2006). Short-Range and Medium-Range Weather Forecasting in the Extratropics during Wintertime with and without an Interactive Ocean. Monthly Weather Review, 134(7), 1972-1986, https://doi.org/10.1175/MWR3206.1
Kim, H. M., Webster, P. J., and Curry, J. A. (2012). Seasonal prediction skill of ECMWF System 4 and NCEP CFSv2 retrospective forecast for the Northern Hemisphere Winter. Climate Dynamics, 39(12), 2957-2973, https://doi.org/10.1007/s00382-012-1364-6
Kohout, A., Williams, M.J.M., Dean, S.M., Meylan, M.H. (2014). Storm-induced sea-ice breakup and the implications for ice extent. Nature, 509(7502), 604-607, https://doi.org/10.1038/nature13262
Kolstad, E. (2015). Extreme small-scale wind episodes over the Barents Sea: When, where and why? Climate Dynamics, 1-14, https://doi.org/10.1007/s00382-014-2462-4
Kumar, N., Voulgaris, G., Warner, J.C., Olabarrieta, M. (2012). Implementation of the vortex force formalism in the coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system for inner shelf and surf zone applications. Ocean Modelling, 47, 65-95, https://doi.org/10.1016/j.ocemod.2012.01.003
Laloyaux, P., de Boisseson, E., Balmaseda, M., Bidlot, J. R., Broennimann, S., Buizza, R., Dalhgren, P., Dee, D., Haimberger, L., Hersbach, H., Kosaka, Y., Martin, M., Poli, P., Rayner, N., Rustemeier, E., Schepers, D. (2018). CERA-20C: A Coupled Reanalysis of the Twentieth Century. Journal of Advances in Modeling Earth Systems, 10(5), 1172-1195. https://doi.org/10.1029/2018MS001273
Large, W. G., and Yeager, S. G. (2009). The global climatology of an interannually varying air - Sea flux data set. Climate Dynamics, 33(2-3), 341-364, https://doi.org/10.1007/s00382-008-0441-3
Lee, C.,Hwang, S., Do, K., and Son, S. (2019). Increasing flood risk due to riverrunoffin the estuarine area during a storm landfall. Estuarine, Coastal and Shelf Science, 221, 104-118, https://doi.org/10.1016/j.ecss.2019.03.021
Lemarié, F., Samson, G., Redelsperger, J.-L., Giordani, H., Brivoal, T., and Madec, G. (2021). A simplified atmospheric boundary layer model for an improved representation of air-sea interactions in eddying oceanic models: implementation and first evaluation in NEMO(4.0). Geoscientific Model Development,14, 543-572, https://doi.org/10.5194/gmd-14-543-2021
Lemieux, J.-F., Dupont, F., Blain, P., Roy, F., Smith, G. C., and Flato, G. M. (2016). Improving the simulation of landfast ice by combining tensile strength and a parameterization for grounded ridges. Journal of Geophysical Research: Oceans, 121, 7354-7368, https://doi.org/10.1002/2016JC012006
Lewis, H., Mittermaier, M., Mylne, K., Norman, K., Scaife, A., Neal, R., … Pilling, C. (2015). From months to minutes - exploring the value of high-resolution rainfall observation and prediction during the UK winter storms of 2013/2014. Meteorological Applications, 22(1), 90-104, https://doi.org/10.1002/met.1493
Lewis, H. W., Castillo Sanchez, J. M., Siddorn, J., King, R. R., Tonani, M., Saulter, A., Sykes, P., Pequignet, A.C., Weedon, G.P., Palmer, T., Staneva, J., Bricheno, L. (2018). Can wave coupling improve operationalregional ocean forecasts for the North-West European Shelf? Ocean Science,15, 669-690, https://doi.org/10.5194/os-15-669-2019
Lewis, H. W., Castillo Sanchez, J. M., Arnold, A., Fallmann, J., Saulter, A., Graham, J., Bush, M., Siddorn, J., Tamzin, P., Adrian, L., Edwards, J., Bricheno, L.,Martinez-de la Torre, A., Clark, J.(2019). TheUKC3 regional coupled environmental prediction system. Geoscientific Model Development,12(6), 2357-2400, https://doi.org/10.5194/gmd-12-2357-2019
Li, Q., Webb, A., Fox-Kemper, B., Craig, A., Danabasoglu, G., Large, W.G., Vertenstein, M. (2016). Langmuir mixing effects on global climate: WAVEWATCH III in CESM. Ocean Modeling, 103, 145-160, https://doi.org/10.1016/j.ocemod.2015.07.020
Li, Q., and Fox-Kemper, B. (2017). Assessing the Effects of Langmuir Turbulence on the Entrainment Buoyancy Flux in the Ocean Surface Boundary Layer. Journal of Physical Oceanography, 47(12), 2863-2886, https://doi.org/10.1175/JPO-D-17-0085.1
Li, Q., Fox-Kemper, B., Breivik, O., Webb, A. (2017). Statistical Models of Global Langmuir Mixing. Ocean Modelling, 113, 95-114, https://doi.org/10.1016/j.ocemod.2017.03.016
Lorenz, E.N. (1963). Deterministic nonperiodic flow. Journal of the Atmospheric Sciences, 20, 130-141
Lorenz, E.N. (1967). The nature and theory of the general circulation of the atmosphere. World Meteorological Organization, 218. Available at; https://library.wmo.int/doc_num.php?explnum_id=10889
Mahoney, A. R., Eicken, H., Gaylord, A.G., and Gens, R. (2014). Landfast sea ice extent in the Chukchi and Beaufort Seas: The annual cycle and decadal variability. Cold Regions Science and Technology, 103, 41-56, https://doi.org/10.1016/j.coldregions.2014.03.003
Maykut, G. A. (1978). Energy exchange over young sea ice in the central Arctic. Journal of Geophysical Research: Oceans, 83(C7), 3646-3658, https://doi.org/10.1029/JC083iC07p03646
McWilliams, J.C., Sullivan, P.P., and Moeng, C.-H. (1997). Langmuir turbulence in the ocean. Journal of Fluid Mechanics, 334, 1-30, https://doi.org/10.1017/S0022112096004375
Minobe, S., Kuwano-Yoshida, A., Komori, N., Xie, S. P., and Small, R. J. (2008). Influence of the Gulf Stream on the troposphere. Nature, 452(7184), 206-209, https://doi.org/10.1038/nature06690
Mogensen, K. S., Magnusson, L., Bidlot, J-R. (2017). Tropical cyclone sensitivity to ocean coupling in the ECMWF coupled model. Journal of Geophysical Research: Oceans,122(5),43924412, https://doi.org/10.1002/2017JC012753
Moin, P. and Mahesh, K. (1998). Direct numerical simulation: A Tool in Turbulence Research. Annual Review of Fluid Mechanics, 30(1), 539-578, https://doi.org/10.1146/annurev.fluid.30.1.539
Naughten, K. A., Meissner, K. J., Galton-Fenzi, B. K., England, M. H., Timmermann, R., Hellmer, H. H., Hattermann, T., and Debernard, J. B. (2018). Intercomparison of Antarctic ice-shelf, ocean, and sea-ice interactions simulated by MetROMS-iceshelf and FESOM 1.4. Geoscientific Model Development, 11(4), 1257-1292, https://doi.org/10.5194/GMD-11-1257-2018
Neetu, S., Lengaigne, M., Vialard, J., Samson, G., Masson, S., Krishnamohan, K. S., and Suresh, I. (2019). Premonsoon/Postmonsoon Bay of Bengal Tropical Cyclones Intensity: Role of Air Sea Coupling and LargeScale Background State. Geophysical Research Letters, 2019, 46(4), 2149-2157.
Oerder, V., Colas, F., Echevin, V., Masson, S., and Lemarié, F. (2018). Impacts of the Mesoscale Ocean-Atmosphere Coupling on the Peru-Chile Ocean Dynamics: The Current-Induced Wind Stress Modulation. Journal of Geophysical Research: Oceans, 123(2), 812-833, https://doi.org/10.1002/2017JC013294
Osadchiev, A. A., Pisareva,M.N., Spivak, E. A., Shchuka, S. A., andSemiletov, I. P.(2020). Freshwatertransport between the Kara, Laptev, and East-Siberian seas. Scientific Reports,10(1),1-14, https://doi.org/10.1038/s41598-020-70096-w
Pellerin, P., Ritchie, H., Saucier, F. J., Roy, F., Desjardins, S., Valin, M., and Lee, V. (2004). Impact of a twoway coupling between an atmospheric and an ocean-ice model over the Gulf of St. Lawrence. Monthly Weather Review, 132, 1379-1398, https://doi.org/10.1175/1520-0493(2004)132<1379:IOATCB>2.0.CO;2
Penland, C., andMatrosova, L.(1998).PredictionoftropicalAtlantic sea surface temperaturesusing LinearInverse Modeling. Journal of Climate,11, 483-496, https://doi.org/10.1175/1520-0442(1998)011<0483:POTASS>2.0.CO;2
Penland, C., and Sardeshmukh, P. D. (1995). The optimal growth of tropical sea surface temperature anomalies. Journal of Climate, 8, 1999-2024.
Rabault, J., Sutherland, G., Gundersen, O., Jensen, A., Marchenko, A., Breivik, O. (2020). An Open Source, Versatile, Affordable Waves in Ice Instrument for Scientific Measurements in the Polar Regions. Cold Regions Science and Technology, 170, 11, https://doi.org/10.1016/j.coldregions.2019.102955
Rascle, N., Ardhuin, F., Terray, E. (2006). Drift and mixing under the ocean surface: A coherent one-dimensional description with application to unstratified conditions. Journal of Geophysical Research, 111(C3), 16, https://doi.org/10.1029/2005JC003004
Rasmussen, E.A., Turner (2003). Polar lows: mesoscale weather systems in the polar regions, Cambridge University Press.
Renault, L., Molemaker, M. J., Gula, J., Masson, S., and McWilliams, J. C. (2016) Control and Stabilization of the Gulf Stream by Oceanic Current Interaction with the Atmosphere. Journal of Physical Oceanography, 46, 3439-3453, https://doi.org/10.1175/JPO-D-16-0115.1
Ridley, J. K., Blockley, E.W., Keen, A.B., Rae, J.G.L.,West, A.E., and Schroeder, D. (2018). The sea icemodel component of HadGEM3-GC3.1. Geoscientific Model Development,11(2), 713-723, https://doi.org/10.5194/gmd-11-713-2018
Røed, L.P., and Albretsen, J. (2007). The impact of freshwater discharges on the ocean circulation in the Skagerrak/northern North Sea area Part I: Model validation. Ocean Dynamics, 57(4-5), 269-285, https://doi.org/10.1007/s10236-007-0122-5
Saha, S., Nadiga, S., Thiaw, C., Wang, J., Zhang, Q., Van den Dool, H.M., Pan, H.-L., Moorthi, S., Behringer, D., Stokes, D., Peña, M., Lord, S., White, G., Ebisuzaki, W., Peng, P., Xie, P. (2006). The NCEP Climate Forecast System. Journal of Climate, 19, 3483-3517, https://doi.org/10.1175/JCLI3812.1
Saha, S., Moorthi, S., Pan, H.-L., Wu, X., Wang, J., Nadiga, S., Tripp, P., Kistler, R., Woollen, J., Behringer, D., Liu, H., Stokes, D., Grumbine, R., Gayno, G., Wang, J., Hou, Y.-T., Chuang, H., Juang, H.-M.H., Sela, J., Iredell, M., Treadon, R., Kleist, D., Delst, P.V., Keyser, D., Derber, J., Ek, M., Meng, J., Wei, H., Yang, R., Lord, S., van den Dool, H., Kumar, A., Wang, W., Long, C., Chelliah, M., Xue, Y., Huang, B., Schemm, J.-K., Ebisuzaki, W., Lin, R., Xie, P., Chen, Y., Han, Y., Cucurull, L., Reynolds, R.W., Rutledge, G., Goldberg, M. (2010). The NCEP Climate Forecast System Reanalysis. Bulletin of the American Meteorological Society, 91, 1015-1057, https://doi.org/10.1175/2010BAMS3001.1
Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P., Behringer, D., Hou, Y.-T., Chuang, H., Iredell, M., Ek, M., Meng,J., Yang,R., PeñaMendez,M., van denDool,H., Zhang,Q.,Wang,W., Chen,M., andBecker, E.(2014). TheNCEP Climate Forecast System Version 2. Journal of Climate, 27, 2185-2208, https://doi.org/10.1175/JCLI-D-12-00823.1
Semedo, A., Suvselj, K., Rutgersson, A., Sterl, A. (2011). A global view on the wind sea and swell climate and variability from ERA-40. Journal of Climate, 24(5), 1461-1479, https://doi.org/10.1175/2010JCLI3718.1
Seo, H., Subramanian, A. C., Miller, A. J., and Cavanaugh, N. R. (2014). Coupled impacts of the diurnal cycle of sea surface temperature on the Madden-Julian oscillation. Journal of Climate, 27(22), 8422-8443, https://doi.org/10.1175/JCLI-D-14-00141.1
Shelly, A., Xavier, P., Copsey, D., Johns, T., Rodriguez, J.M., Milton, S., and Klingaman, N. (2014). Coupled versus uncoupled hindcast simulations of the Madden-Julian Oscillation in the Year of Tropical Convection. Geophysical Research Letters, 41, 5670-5677, https://doi.org/10.1002/2013GL059062
Sluka, T., Penny, S.G., Kalnay, E. and Miyoshi, T. (2016). Assimilating atmospheric observations into the ocean using strongly coupled ensemble data assimilation. Geophysical Research Letters, 43(2), 752-759, https://doi.org/10.1002/2015GL067238
Smith, G. C., Bélanger, J. M., Roy, F., Pellerin, P., Ritchie, H., Onu, K., Roch, M., Zadra, A., Surcel Colan, D., Winter, B., Fontecilla, J.S., Deacu, D. (2018). Impact of coupling with an ice-ocean model on global medium-range NWP forecast skill. Monthly Weather Review, 146(4), 1157-1180, https://doi.org/10.1175/MWR-D-17-0157.1
Spreen, G., Kwok, R., Menemenlis, D., and Nguyen, A. T. (2017). Sea-ice deformation in a coupled ocean-sea-ice model and in satellite remote sensing data. The Cryosphere,11,1553-1573, https://doi.org/10.5194/tc-11-1553-2017
Staneva, J., Alari, V., Breivik, O., Bidlot, J.-R., Mogensen, K. (2017). Effects of wave-induced forcing on a circulation model of the North Sea. Ocean Dynamics, 67, 81-101, https://doi.org/10.1007/s10236-016-1009-0
Sutherland, G., and Rabault, J. (2016). Observations of wave dispersion and attenuation in landfast ice. Journal of Geophysical Research: Oceans, 121(3), 1984-1997, https://doi.org/10.1002/2015JC011446
Takano, K., Mintz, Y., Han, Y.-J. (1973). Numerical simulation of the world ocean circulation. Paper presented at the 2nd Conference on Numerical Prediction. Am. Meteorol. Soc. (1973), Monterey, CA (unpublished).
Uchiyama, Y., McWilliams, J. C., Shchepetkin, A. F. (2010). Wave-current interaction in an oceanic circulation model with a vortex-force formalism: Application to the surf zone. Ocean Modelling, 34(1), 16-35, https://doi.org/10.1016/j.ocemod.2010.04.002
Vannitsem, S., and Duan, W. (2020). On the use of near-neutral Backward Lyapunov Vectors to get reliable ensemble forecasts in coupled ocean–atmosphere systems. Climate Dynamics, 55, 1125-1139, https://doi.org/10.1007/s00382-020-05313-3
Vinayachandran, P. N., Davidson, F., and Chassignet, E. P. (2020). Toward Joint Assessments, Modern Capabilities, and New Links for Ocean Prediction Systems. Bulletin of the American Meteorological Society, 101(4), E485-E487, https://doi.org/10.1175/bams-d-19-0276.1
Wahle, K., Staneva, J., Koch, W., Fenoglio-Marc, L., Ho-Hagemann, H. T. M., and Stanev, E. V. (2017). An atmosphere-wave regional coupled model: Improving predictions of wave heights and surface winds in the southern North Sea. Ocean Science, 13(2), 289-301, https://doi.org/10.5194/os-13-289-2017
Wang, K., and Wang, C. (2009). Modeling linear kinematic features in pack ice. Journal of Geophysical Research: Oceans, 114(C12), https://doi.org/10.1029/2008JC005217
Williams, T.D., Bennetts, L.G., Squire, V.A., Dumont, D., Bertino, L. (2013). Wave-ice interactions in the marginal ice zone. Part 1: Theoretical foundations. Ocean Modelling, 71, 81-91, https://doi.org/10.1016/j.ocemod.2013.05.010
Wolf, J. (2008). Coupled wave and surge modelling and implications for coastal flooding. Advances in Geosciences, 17, 19-22, https://doi.org/10.5194/adgeo-17-19-2008
Wu, L.,Rutgersson,A.,Breivik,O.(2019).Ocean-wave-atmosphereinteractionprocesses inafully coupledmodelling system. Journal of Advances in Modeling Earth Systems,11, 3852 3874, https://doi.org/10.1029/2019MS001761
Wu, L., Staneva, J., Breivik,Ø., Rutgersson, A.,Nurser, A. J. G., Clementi, E., and Madec, G. (2019).Wave effects on coastal upwelling and water level. Ocean Modelling, 101405, https://doi.org/10.1016/J.OCEMOD.2019.101405
Zhang, S., Harrison, M. J., Rosati, A., and Wittenberg, A. T. (2007). System Design and Evaluation of Coupled Ensemble Data Assimilation for Global Oceanic Climate Studies. Monthly Weather Review, 135(10), https://doi.org/10.1175/MWR3466.1
Follow us