Chapter 4

Architecture of ocean monitoring and forecasting systems


CHAPTER
COORDINATORS

Avichal Mehra
CHAPTER
AUTHORS

Roland Aznar, Stefania Ciliberti, Laurence Crosnier, Marie Drevillon, Yann Drillet, Begoña Pérez Gómez, Antonio Reppucci, Joseph Sudheer, Marcos Garcia Sotillo, Marina Tonani, P. N. Vinaychandranand, and Aihong Zhong

4.7 User management and outreach

A marine service is the provision of marine information to assist decision making. The service must respond to user needs, must be based on scientifically credible information and expertise, and requires appropriate engagement between users and providers. It should be an integrated service gathering all ocean products into a single catalogue sustained on the long term.

The first mandatory step is to define the service to be provided and answer the following questions:

  • What is the target audience of the service? It can include one or all the following users: national/local public environmental agencies, scientists and academia, citizens, private companies, etc.
     
  • Which data policy is applied to the service? It can be an open service (open to all users with or without registration) or a restricted access service. It can also be a free of charge or a paid service.
     
  • Which operational commitments and service level agreement are available to users? To engage through a transparent and trust relationship with users, service commitments should be made publicly available.
     

Depending on the answers to the 3 above questions, the service will develop a patchwork of the following assets:

  • Communication assets (both on and offline), ocean literacy tools, and societal awareness can for example include the activities below. These are designed to deliver the operational oceanography service expertise to a wider audience through the translation from scientific language and findings for different target audiences, and to distribute the tools to drive uptake.
    • Digital website, digital tools, social media (Twitter, Linkedin, Youtube, etc.);
    • Editorial (News, Events web section, etc.) and press relations (Newsletters, etc.);
    • Ocean Literacy and Outreach activities (outreach events, partner initiatives, museum exhibitions, etc.).
       
  • An ocean data portal including the catalogue of ocean products should be made available online to download and visualise marine data.
    • A searchable online catalogue of products should be made available including product metadata description and search parameters such as: free text, geographical areas, marine parameters, models or observations (satellite or in situ), resolution (spatial and temporal), coverage (spatial and temporal), up- date frequency, etc. It should also allow the user to download the selected data product (with or without registration, and with or without charges, depending on the definition of the service). The online catalogue should be compliant with the highest standards of usability and interoperability.
    • Another major asset includes viewing tools to visually explore the different ocean products. Such tools can include the ability to create 2D maps, cross sections, select regions, and generate graphs with selected variables. Layering and superimposing layers with different opacities can be made possible allowing users to compare multiple datasets. In addition, the selected maps and time frames can be exported as videos, images or embedded elsewhere.
    • Such ocean data portal encompasses product management activities to carefully and closely manage the product portfolio and each product life cycle. Product management allows to carefully track all product changes impacting users along with product metadata updates and homogenisation, which in turn need to be carefully communicated to the users.
       
  • The user support desk is the point of contact for all questions and comments from users and its objective is to optimise user experience throughout the service. Various means can be used to initiate or conduct exchanges with users (e.g. chat box, e-mail address, online forms, phone, video-conferencing, etc.). The user support desk is also responsible for  informing users of operational issues on products and services, such as incidents, maintenance, and improvements. In addition, it also provides an internal link between users and scientific and technical experts. Finally, it is also very involved in the training activity described below and participates in all such events. A client-oriented approach for specific users can be developed if needed for specific major accounts.
     
  • User learning services or training activities allow to strengthen user uptake: its objective is to train, answer questions, facilitate user experience, share knowledge, and collect requirements. Training workshops are designed to train existing, new or beginner users. The target audience needs to be clearly defined and the training resources need to be developed accordingly. For example, participants can learn about products and services and their possible applications across a wide range of subjects during plenary and practical training sessions. Participants should be enabled to share their experiences as well as express their needs and requirements for future new products to be included in the portfolio. Finally, tutorial videos and jupyter notebooks (i.e. open-source web application that allows experts to create practical exercises and share codes) can be shared with participants to help them for their own code programming and understanding of how to use products.
     
  • A service monitoring activity: the service should be monitored through key performance indicators (KPIs), reported quarterly and annually. Such KPIs assess the service reliability against operational commitments and service level agreement (timeliness, robustness, etc.). The service monitoring activity encompasses many KPIs to steer the service and its uptake, and for example provides figures about the product portfolio evolution, variation in the number of subscribers and their detailed characteristics, as well as monitoring of the service availability and product timeliness.
     
  • User feedback and user satisfaction should be measured, monitored, analysed, and injected back into the service through the implementation of new or updated products and services to better fit user’s demand.
     
  • User engagement and market expansion activities can be developed to foster uptake of marine products, develop market intelligence, and seek novel opportunities for data use in new communities. Such activities include targeting developing blue markets, explaining the marine offer to new audiences, showcasing the use of data through use cases, launching marketing campaigns, organising or participating in events advocating the marine services and liaising with new partners and communities.

References

Barnier, B., Siefridt, L., and Marchesiello, P. (1995). Thermal forcing for a global ocean circulation model using a three-year climatology of ECMWF analyses. Journal of Marine Systems, 6(4), 363-380, https://doi.org/10.1016/0924-7963(94)00034-9

Barnier, B. (1998). Forcing the ocean. In “Ocean Modeling and Parameterization”, Editors: E. P. Chassignet and J. Verron, Eds., Kluwer Academic, 45-80. 

Bell, M.J., Lefèbvre, M., Le Traon, P.-Y., Smith, N., Wilmer-Becker, K. (2009). GODAE the global ocean data assimilation experiment. Oceanography, 22, 14-21, https://doi.org/10.5670/oceanog.2009.62

Bellingham, J. (2009). Platforms: Autonomous Underwater Vehicles. In “Encyclopedia of Ocean Sciences”, Editors-in-Chief: J. K. Cochran, H. Bokuniewicz, P. Yager, ISBN: 9780128130827, doi:10.1016/B978-012374473- 9.00730-X 

Bourlès, B., Lumpkin, R., McPhaden, M.J., Hernandez, F., Nobre, P., Campos, E., Yu, L. Planton, S., Busalacchi, A., Moura, A.D., Servain, J., and Trotte, Y. (2008). The PIRATA program: History, accomplishments, and future directions. Bulletin of the American Meteorological Society, 89, 1111-1125, https://doi.org/10.1175/2008BAMS2462.1

Boyer, T.P., Baranova, O.K., Coleman, C., Garcia, H.E., Grodsky, A., Locarnini, R.A., Mishonov, A.V., Paver, C.R., Reagan, J.R., Seidov, D., Smolyar, I.V., Weathers, K.W., Zweng, M.M. (2019). World Ocean Database 2018. A. V. Mishonov, Technical Editor, NOAA Atlas NESDIS 87.

Bouttier, F., and Courtier, P. (2002). Data assimilation concepts and methods. Meteorological training course lecture series, ECMWF, 59. Available at https://www.ecmwf.int/en/elibrary/16928-data-assimilation-concepts-and-methods

Capet, A., Fernández, V., She, J., Dabrowski, T., Umgiesser, G., Staneva, J., Mészáros, L., Campuzano, F., Ursella, L., Nolan, G., El Serafy, G. (2020), Operational Modeling Capacity in European Seas - An EuroGOOS Perspective and Recommendations for Improvement. Frontiers in Marine Science, 7:129, https://doi.org/10.3389/fmars.2020.00129

Carrassi, A., Bocquet, M., Bertino, L., Evensen, G. (2018). Data assimilation in the geosciences: An overview of methods, issues, and perspectives. Wiley Interdisciplinary Reviews: Climate Change, 9(5), e535, https://doi.org/10.1002/wcc.535

Chang, Y.-S., Rosati, A. J., Zhang, S., and Harrison, M. J. (2009). Objective Analysis of Monthly Temperature and Salinity for the World Ocean in the 21st century: Comparison with World Ocean Atlas and Application to Assimilation Validation. Journal of Geophysical Research: Oceans, 114(C2), https://doi.org/10.1029/2008JC004970

Crocker, R., Maksymczuk, J., Mittermaier, M., Tonani, M., and Pequignet, C. (2020). An approach to the verification of high-resolution ocean models using spatial methods. Ocean Science, 16, 831-845, https://doi.org/10.5194/os-16-831-2020

Crosnier, L., and Le Provost, C. (2007). Inter-comparing five forecast operational systems in the North Atlantic and Mediterranean basins: The MERSEA-strand1 Methodology. Journal of Marine Systems, 65(1-4), 354-375, https://doi.org/10.1016/j.jmarsys.2005.01.003

Cummings, J., Bertino, L., Brasseur, P., Fukumori, I., Kamachi, M., Martin, M.J., Mogensen, K., Oke, P., Testut, C.-E., Verron, J., Weaver, A. (2009). Ocean data assimilation systems for GODAE. Oceanography, 22, 96-109, https://doi.org/10.5670/oceanog.2009.69

Dai, A., and Trenberth, K. E. (2002). Estimates of freshwater discharge from continents: Latitudinal and seasonal variations. Journal of Hydrometeorology, 3(6), 660-687, https://doi.org/10.1175/1525-7541(2002)003<0660:EOFDFC>2.0.CO;2

Dai, A., Qian, T., Trenberth, K. E., Milliman, J. D. (2009). Changes in continental freshwater discharge from 1948-2004. Journal of Climate, 22(10), 2773-2791, https://doi.org/10.1175/2008JCLI2592.1

Dai, A. (2021). Hydroclimatic trends during 1950–2018 over global land. Climate Dynamics, 4027-4049, https://doi.org/10.1007/s00382-021-05684-1

De Mey, P. (1997). Data assimilation at the oceanic mesoscale: A review. Journal of Meteorological of Japan, 75(1b), 415-427, https://doi.org/10.2151/jmsj1965.75.1B_415

Carrassi, A., Bocquet, M., Bertino, L., Evensen, G. (2018). Data assimilation in the geosciences: An overview of methods, issues, and perspectives. Wiley Interdisciplinary Reviews: Climate Change, 9(5), e535, https://doi.org/10.1002/wcc.535

Donlon, C, Minnett, P., Gentemann, C., Nightingale, T.J., Barton, I., Ward, B., Murray, M. (2002). Toward improved validation of satellite sea surface skin temperature measurements for climate research. Journal of Climate, 15:353-369, https://doi.org/10.1175/1520-0442(2002)015<0353:TIVOSS>2.0.CO;2

Donlon, C., Casey, K., Robinson, I., Gentemann, C., Reynolds, R, Barton, I., Arino, O., Stark, J., Rayner, N., Le Borgne, P., Poulter, D., Vazquez-Cuervo, J., Armstrong, E., Beggs, H., Llewellyn-Jones, D., Minnett, P., Merchant, C., Evans, R. (2009). The GODAE High-Resolution Sea Surface Temperature Pilot Project. Oceanography, 22, 34-45, https://doi.org/10.5670/oceanog.2009.64

Drévillon, M., Greiner, E., Paradis, D., et al. (2013). A strategy for producing refined currents in the Equatorial Atlantic in the context of the search of the AF447 wreckage. Ocean Dynamics, 63, 63-82, https://doi.org/10.1007/s10236-012-0580-2

Eastwood, S., Le Borgne, P., Péré, S., Poulter, D. (2011). Diurnal variability in sea surface temperature in the Arctic. Remote Sensing of Environment, 115(10), 2594-2602, https://doi.org/10.1016/j.rse.2011.05.015

GHRSST Science Team (2012). The Recommended GHRSST Data Specification (GDS) 2.0, document revision 5, available from the GHRSST International Project Office, available at https://www.ghrsst.org/governance-documents/ghrsst-data-processing-specification-2-0-revision-5/

Griffies, S. M. (2006). Some ocean model fundamentals. In “Ocean Weather Forecasting”, Editoris: E. P. Chassignet and J. Verron, 19-73, Springer-Verlag, Dordrecht, The Netherlands, https://doi.org/10.1007/1-4020-4028-8_2 

Groom, S., Sathyendranath, S., Ban, Y,. Bernard, S., Brewin, R., Brotas, V., Brockmann, C., Chauhan, P., Choi, J-K., Chuprin, A., Ciavatta, S., Cipollini, P. Donlon, C., Franz, B., He, X., Hirata, T., Jackson, T., Kampel, M., Krasemann, H., Lavender, S., Pardo-Martinez, S., Mélin, F., Platt, T., Santoleri, R., Skakala, J., Schaeffer, B., Smith, M., Steinmetz, F., Valente, A., Wang, M. (2019). Satellite Ocean Colour: Current Status and Future Perspective. Frontiers in Marine Science, 6:485, https://doi.org/10.3389/fmars.2019.00485

Hamlington, B.D., Thompson, P.,. Hammond, W.C., Blewitt, G., Ray, R.D. (2016). Assessing the impact of vertical land motion on twentieth century global mean sea level estimates. Journal of Geophysical Research, 121(7), 4980-4993, https://doi.org/10.1002/2016JC011747

Hernandez, F., Bertino, L., Brassington, G.B., Chassignet, E., Cummings, J., Davidson, F., Drevillon, M., Garric, G., Kamachi, M., Lellouche, J.-M., et al. (2009). Validation and intercomparison studies within GODAE. Oceanography, 22(3), 128-143, https://doi.org/10.5670/oceanog.2009.71

Hernandez, F., Blockley, E., Brassington, G B., Davidson, F., Divakaran, P., Drévillon, M., Ishizaki, S., Garcia-Sotillo, M., Hogan, P. J., Lagemaa, P., Levier, B., Martin, M., Mehra, A., Mooers, C., Ferry, N., Ryan, A., Regnier, C., Sellar, A., Smith, G. C., Sofianos, S., Spindler, T., Volpe, G., Wilkin, J., Zaron, E D., Zhang, A. (2015). Recent progress in performance evaluations and near real-time assessment of operational ocean products. Journal of Operational Oceanography, 8(sup2), https://doi.org/10.1080/1755876X.2015.1050282

Hernandez, F., Smith, G., Baetens, K., Cossarini, G., Garcia-Hermosa, I., Drevillon, M., ... and von Schuckman, K. (2018). Measuring performances, skill and accuracy in operational oceanography: New challenges and approaches. In “New Frontiers in Operational Oceanography”, Editors: E. Chassignet, A. Pascual, J. Tintoré, and J. Verron, GODAE OceanView, 759-796, https://doi.org/10.17125/gov2018.ch29 

Hollingsworth, A., Shaw, D. B., Lönnberg, P., Illari, L., Arpe, K., and Simmons, A. J. (1986). Monitoring of Observation and Analysis Quality by a Data Assimilation System. Monthly Weather Review, 114(5), 861-879, https://doi.org/10.1175/1520-0493(1986)114<0861:MOOAAQ>2.0.CO;2

International Altimetry Team (2021). Altimetry for the future: building on 25 years of progress. Advances in Space Research, 68(2), 319-363, https://doi.org/10.1016/j.asr.2021.01.022

Kurihara, Y., Murakami, H., and Kachi, M. (2016). Sea surface temperature from the new Japanese geostationary meteorological Himawari-8 satellite. Geophysical Research Letters, 43(3), 1234-1240, https://doi.org/10.1002/2015GL067159

Josey, S.A., Kent, E.C., Taylor, P.K. (1999). New insights into the ocean heat budget closure problem from analysis of the SOC air-sea flux climatology. Journal of Climate, 12(9), 2856-2880, https://doi.org/10.1175/1520-0442(1999)012<2856:NIITOH>2.0.CO;2

Jolliffe, I.T., and Stephenson, D.B. (2003). Forecast Verification: A Practitioner’s Guide in Atmospheric Sciences, John Wiley & Sons Ltd., Hoboken, 296 pages, ISBN: 978-0-470-66071-3

Legates, D.R., McCabe, G.J. Jr. (1999). Evaluating the use of “Goodness of Fit” measures in hydrologic and hydroclimatic model validation. Water Resources Research, 35, 233-241, https://doi.org/10.1029/1998WR900018

Legates, D., and Mccabe, G. (2013). A refined index of model performance: A rejoinder. International Journal of Climatology, 33(4), 1053-1056, https://doi.org/10.1002/joc.3487

Le Traon, P.Y., Larnicol, G., Guinehut, S., Pouliquen, S., Bentamy, A., Roemmich, D., Donlon, C., Roquet, H., Jacobs, G., Griffin, D., Bonjean, F., Hoepffner, N., Breivik, L.A. (2009). Data assembly and processing for operational oceanography 10 years of achievements. Oceanography, 22(3), 56-69, https://doi.org/10.5670/oceanog.2009.66

Levitus, S. (1982). Climatological Atlas of the World Ocean. NOAA/ERL GFDL Professional Paper 13, Princeton, N.J., 173 pp. (NTIS PB83-184093). Lindstrom, E., Gunn, J., Fischer, A., McCurdy, A. and Glover L.K. (2012). A Framework for Ocean Observing. IOC Information Document;1284, Rev. 2, https://doi.org/10.5270/OceanObs09-FOO 

Maksymczuk J., Hernandez, F., Sellar, A., Baetens, K., Drevillon, M., Mahdon, R., Levier, B., Regnier, C., Ryan, A. (2016). Product Quality Achievements Within MyOcean. Mercator Ocean Journal #54. Available at https://www.mercator-ocean.eu/en/ocean-science/scientific-publications/mercator-ocean-journal/newsletter-54-focusing-on-the-main-outcomes-of-the-myocean2-and-follon-on-projects/

Mantovani C., Corgnati, L., Horstmann, J. Rubio, A., Reyes, E., Quentin, C., Cosoli, S., Asensio, J. L., Mader, J., Griffa, A. (2020). Best Practices on High Frequency Radar Deployment and Operation for Ocean Current Measurement. Frontiers in Marine Science, 7:210, https://doi.org/10.3389/fmars.2020.00210

Marks, K., and Smith, W. (2006). An Evaluation of Publicly Available Global Bathymetry Grids. Marine Geophysical Researches, 27, 19-34, https://doi.org/10.1007/s11001-005-2095-4

Martin, M.J. (2016). Suitability of satellite sea surface salinity data for use in assessing and correcting ocean forecasts. Remote Sensing of Environment, 180, 305-319. https://doi.org/10.1016/j.rse.2016.02.004

Martin, M.J, King, R.R., While, J., Aguiar, A.B. (2019). Assimilating satellite sea-surface salinity data for SMOS Aquarius and SMAP into a global ocean forecasting system. Quarterly Journal of the Royal Meteorological Society, 145(719), 705-726, https://doi.org/10.1002/qj.3461

McPhaden, M. J., Busalacchi, A.J., Cheney, R., Donguy, J.R., Gage, K.S., Halpern, D., Ji, M., Julian, P., Meyers, G., Mitchum, G.T., Niller, P.P., Picaut, J., Reynolds, R.W., Smith, N., Takeuchi, K. (1998). The Tropical Ocean-Global Atmosphere (TOGA) observing system: A decade of progress. Journal of Geophysical Research, 103, 14169-14240, https://doi.org/10.1029/97JC02906

McPhaden, M. J., Meyers, G., Ando, K., Masumoto, Y., Murty, V. S., Ravichandran, M., Syamsudin, F., Vialard, J., Yu, L., and Yu, W. (2009). RAMA: The Research Moored Array for African-Asia-Australian Monsoon Analysis and Prediction. Bulletin of the American Meteorological Society, 90, 459-480, https://doi.org/10.1175/2008BAMS2608.1

Moore, A.M., Martin, M.J., Akella, S., Arango, H.G., Balmaseda, M., Bertino, L., Ciavatta, S., Cornuelle, B., Cummings, J., Frolov, S., Lermusiaux, P., Oddo, P., Oke, P.R., Storto, A., Teruzzi, A., Vidard, A., Weaver, A.T. (2019). Synthesis of Ocean Observations Using Data Assimilation for Operational, Real-Time and Reanalysis Systems: A More Complete Picture of the State of the Ocean. Frontiers in Marine Science, 6:90, https://doi.org/10.3389/fmars.2019.00090

Naeije, M., Schrama, E., and Scharroo, R. (2000). The Radar Altimeter Database System project RADS. Published in “IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment”, doi:10.1109/ IGARSS.2000.861605

Nurmi P. (2003). Recommendations on the verification of local weather forecasts (at ECMWF member states). Consultancy report to ECMWF Operations Department. Available at https://www.cawcr.gov.au/projects/verification/Rec_FIN_Oct.pdf

O’Carroll, A.G., Armstrong, E.M., Beggs, H., Bouali, M., Casey, K.S., Corlett, G.K., Dash, P., Donlon, C.J., Gentemann, C.L., Hoyer, J.L., Ignatov, A., Kabobah, K., Kachi, M. Kurihara, Y., Karagali, I., Maturi, E., Merchant, C.J., Minnett, P., Pennybacker, M., Ramakrishnan, B., Ramsankaran, R., Santoleri, R., Sunder, S., Saux Picart, S., Vazquez-Cuervo, J., Wimmer, W. (2019). Observational needs of sea surface temperature, Frontiers in Marine Science, 6:420, https://doi.org/10.3389/fmars.2019.00420

Peng, G., Downs, R.R., Lacagnina, C., Ramapriyan, H., Ivánová, I., Moroni, D., Wei, Y., Larnicol, G., Wyborn, L., Goldberg, M., Schulz, J., Bastrakova, I., Ganske, A., Bastin, L., Khalsa, S.J.S., Wu, M., Shie, C.-L., Ritchey, N., Jones, D., Habermann, T., Lief, C., Maggio, I., Albani, M., Stall, S., Zhou, L., Drévillon, M., Champion, S., Hou, C.S., Doblas-Reyes, F., Lehnert, K., Robinson, E. and Bugbee, K., (2021). Call to Action for Global Access to and Harmonization of Quality Information of Individual Earth Science Datasets. Data Science Journal, 20(1), 19, http://doi.org/10.5334/dsj-2021-019

Petrenko, B., Ignatov, A., Kihai, Y., Dash, P. (2016). Sensor-Specific Error Statistics for SST in the Advanced Clear-Sky Processor for Oceans. Journal of Atmospheric and Oceanic Technology, 33(2), 345-359, https://doi.org/10.1175/JTECH-D-15-0166.1

Roarty, H., Cook, T., Hazard, L., George, D., Harlan, J., Cosoli, S., Wyatt, L., Alvarez Fanjul, E., Terrill, E., Otero, M., Largier, J., Glenn, S., Ebuchi, N., Whitehouse, Br., Bartlett, K., Mader, J., Rubio, A., Corgnati, L., Mantovani, C., Griffa, A., Reyes, E., Lorente, P., Flores-Vidal, X., Saavedra-Matta, K. J., Rogowski, P., Prukpitikul, S., Lee, S-H., Lai, J-W., Guerin, C-A., Sanchez, J., Hansen, B., Grilli, S. (2019). The Global High Frequency Radar Network. Frontiers in Marine Science, 6:164, https://doi.org/10.3389/fmars.2019.00164

Ryan, A. G., Regnier, C., Divakaran, P., Spindler, T., Mehra, A., Smith, G. C., et al. (2015). GODAE OceanView Class 4 forecast verification framework: global ocean inter-comparison. Journal of Operational Oceanography, 8(sup1), S112-S126, https://doi.org/10.1080/1755876X.2015.1022330

Scharroo, R. (2012). RADS version 3.1: User Manual and Format Specification. Available at http://rads.tudelft.nl/rads/radsmanual.pdf

Sotillo, M. G., Garcia-Hermosa, I., Drévillon, M., Régnier, C., Szczypta, C., Hernandez, F., Melet, A., Le Traon, P.Y. (2021). Communicating CMEMS Product Quality: evolution & achievements along Copernicus-1 (2015- 2021). Mercator Ocean Journal #57. Available at https://marine.copernicus.eu/news/copernicus-1-marine-service-achievements-2015-2021 

Tonani, M., Balmaseda, M., Bertino, L., Blockley, E., Brassington, G., Davidson, F., Drillet, Y., Hogan, P., Kuragano, T., Lee, T., Mehra, A., Paranathara, F., Tanajura, C., Wang, H. (2015). Status and future of global and regional ocean prediction systems. Journal of Operational Oceanography, 8, s201-s220, https://doi.org/10.1080/1755876X.2015.1049892

Tournadre, J., Bouhier, N., Girard-Ardhuin, F., Remy, F. (2015). Large icebergs characteristics from altimeter waveforms analysis. Journal of Geophysical Research: Oceans, 120(3), 1954-1974, https://doi.org/10.1002/2014JC010502

Tozer, B., Sandwell, D.T., Smith, W.H.F., Olson, C., Beale, J. R., and Wessel, P. (2019). Global bathymetry and topography at 15 arc sec: SRTM15+. Earth and Space Science, 6, 1847-1864, https://doi.org/10.1029/2019EA000658

Vinogradova, N.T., Ponte, R.M., Fukumori, I., and Wang, O. (2014). Estimating satellite salinity errors for assimilation of Aquarius and SMOS data into climate models. Journal of Geophysical Research: Oceans, 119(8), 4732-4744, https://doi.org/10.1002/2014JC009906

Vinogradova N., Lee, T., Boutin, J., Drushka, K., Fournier, S., Sabia, R., Stammer, D., Bayler, E., Reul, N., Gordon, A., Melnichenko, O., Li, L., Hackert, E., Martin, M., Kolodziejczyk, N., Hasson, A., Brown, S., Misra, S., and Linkstrom, E. (2019). Satellite Salinity Observing System: Recent Discoveries and the Way Forward. Frontiers in Marine Science, 6:243, https://doi.org/10.3389/fmars.2019.00243

Zhang H., Beggs, H., Wang, X.H., Kiss, A. E., Griffin, C. (2016). Seasonal patterns of SST diurnal variation over the Tropical Warm Pool region. Journal of Geophysical Research: Oceans, 121(11), 8077-8094, https://doi.org/10.1002/2016JC012210

Chapter 4

Architecture of ocean monitoring and forecasting systems

To start contributing, sharing knowledge and editing the WIKI, please login